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TFY4245/FY8917 Solid State Physics, Advanced Course

Problemset 9
NTNU

Institutt for fysikk

SUGGESTED SOLUTION

Problem 1

(a) The key observation here is to realize that since the dispersion is given by

En,kx,ky,kz = h̄ωc(n+1/2)+
h̄2k2

z

2m
, (1)

the density of states will be the sum of the density of states for a 1D electron gas (due to the k2
z term)

shifted to the minimum energies h̄ωc(n+ 1/2). Recall that we have a massive degeneracy in the kx

and ky indices. So let us first briefly derive the 1D density of states for free electrons, using the same
approach is done in the textbook 3D case.

The k-space volume taken up by a single state (generalized ”cube” in k-space) is in 1D equal to π/L
for a system with length L and using periodic boundary conditions. The latter gives that the allowed
k-values are separated by π/L. The k-space volume of a generalized ”sphere” in 1D is simply Vline = k.
Therefore, the number of filled states in the sphere is

N =Vline/V = kL/π. (2)

Since ε = h̄2k2/2m, we get

N =
√

2mε
1/2 L

h̄π
. (3)

The density per unit energy is then

dN
dε

=
dN
dk

dk
dε

=
mL

h̄π
√

2mE
. (4)

The density of states (DOS) D(ε) per unit volume is then found by dividing on the ”volume” L of the
crystal:

D(ε) =
1

h̄π

√
m
2ε

. (5)

This is per spin.

In our case, we have a 3D system. To get the DOS per unit volume, we thus should divide on L3 rather
than L. We should also take into account the degeneracy in kx,ky: namely, we have NL = eBL2/h
number of modes for each n and kz value.
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Thus, we arrive that the final value for the density of states (per unit volume) and per spin:

D(ε) =
NL

L2

∞

∑
n=0

1
πh̄

√
m

2(ε− [n+1/2]h̄ωc)
Θ

(
ε− [n+1/2]h̄ωc

)
. (6)

The step-function is there because the minimum value of the energy for each value of n is h̄ωc(n+
1/2).

(b) The total zero-temperature energy of the system should be the integral over the energy of each
state times the density of states (times a factor 2 for spin):

E = 2V
∫ µ

0
dε ε D(ε). (7)

An integration by parts gives

E = 2V
[
µP1(µ)−

∫ µ

0
dε P1(ε)

]
= µN −2V P2(µ). (8)

The explicit expression for P2(µ) is

P2(µ) =
1

πh̄

√
m
2

NL

L2

∞

∑
n=0

4
3

(
µ− (n+1/2)h̄ωc

)3/2
Θ(µ− (n+1/2)h̄ωc

)
. (9)

Since we could assume h̄ωc ≪ µ, we can replace this sum over n by an integral. The Poisson summa-
tion formula given in the problem text provides us with:

P2(µ) =
1

πh̄

√
m
2

NL

L2
4
3

{∫ µ/h̄ωc

0
dx (µ− xh̄ωc)

3/2 +2
∞

∑
s=1

(−1)s
∫ µ/h̄ωc

0
dx (µ− xh̄ωc)

3/2 cos(2πsx)
}
.

(10)

Let p ≡ µ/h̄ωc. We then have

P2(µ) =C0

[
(h̄ωc)

3/2
∫ p

0
(p− x)3/2dx+2

∞

∑
s=1

(−1)s(h̄ωc)
3/2

∫ p

0
(p− x)3/2 cos(2πsx)dx

]
, (11)

where we defined C0 ≡ 1
πh̄

√m
2

NL
L2

4
3 for brevity. Use that

∫ p

0
(p− x)3/2dx =

2p5/2

5
. (12)

Then, we use a partial integration to show that

∫ p

0
(p− x)3/2 cos(2πsx)dx =

sin(2πsx)
2πs

(p− x)3/2

∣∣∣∣∣
p

0

−
∫ p

0

sin(2πsx)
2πs

(
− 3

2

)
(p− x)1/2dx. (13)

The surface term vanishes. Performing a variable shift u ≡ p− x, we obtain for the remaining term:∫ p

0
(p− x)3/2 cos(2πsx)dx =

3
2

1
2πs

∫ p

0
du

√
usin[2πs(p−u)]

=
3
√

p
8π2s2 −

3
16π2s5/2

[
cos(2πps)C(2

√
sp)+ sin(2πps)S(2

√
sp)

]
(14)
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where in the second line we defined the Fresnel integrals C(z) and S(z) which are two transcendental
functions. Plugging the above results back into our expression for P2(µ) gives:

P2(µ) =C0

{
(h̄ωc)

3/2
∫ p

0
(p− x)3/2dx+2

∞

∑
s=1

(−1)s(h̄ωc)
3/2 3

√
p

8π2s2

−2(h̄ωc)
3/2 3

16π2

∞

∑
s=1

(−1)s

s5/2

[
cos(2πps)C(2

√
sp)+ sin(2πps)S(2

√
sp)

]}
. (15)

Now use
∞

∑
s=1

(−1)s

s2 =−π2

12
: (16)

to obtain

P2(µ) =C0

{
(h̄ωc)

3/2 2p5/2

5

−2(h̄ωc)
3/2

(√p
32

+
3

16π2

∞

∑
s=1

(−1)s

s5/2

[
cos(2πps)C(2

√
sp)+ sin(2πps)S(2

√
sp)

])}
. (17)

Compare now
√

p
32 with the term containing the sum. As p increases, the first term increase linearly.

On the other hand, the Fresnel integrals C(x) and S(x) both have asymptotes 0.5 as x → ∞. Numer-
ically, one verifies that the term with the sum is indeed much smaller than

√
p

32 in the limit p ≫ 1,
corresponding to µ ≫ h̄ωc, that we are considering (in effect, B → 0). Therefore, this term can safely
be neglected and we are left with

P2(µ) =
1

πh̄

√
m
2

NL

L2
4
3

(2
3

µ5/2

h̄ωc
− 1

16
(h̄ωc)

√
µ
)
. (18)

(c) Since NL ∝ B and h̄ωc ∝ B, the first term is of order B0 and thus determines the energy in the
absence of a magnetic field. We therefore get

E = E(B = 0)+2V
1

πh̄

√
m
2

NL

L2
4
3

1
16

h̄ωc
√

µ, (19)

allowing us to identify

κ =
1

12π2V
e2√µ
√

2mh̄
. (20)

Problem 2

If j = j′, the exponential is 1, so the sum is N ·1 = N. If j ̸= j′, consider the summand which is

eik( j− j′)a = ei 2π

Na m( j− j′)a ≡ xm (21)

where x ≡ ei2π( j− j′)/N and we used that r j = ja in 1D.

Since both j and j′ can only take values between 1 and N, and we have assumed j ̸= j′, we get
0 < | j− j′|< N, and therefore x ̸= 1. We now rewrite the sum as

∑
k

eik( j− j′)a =
N/2−1

∑
m=−N/2

xm = x−N/2
N−1

∑
m=0

xm = x−N/2 1− xN

1− x
. (22)

We used above the formula for the sum of a geometric seriers. Since x ̸= 1 the denominator 1− x is
nonzero. Furthermore, xN = 1, so 1− xN vanishes. This completes the proof.


