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TFY4245/FY8917 Solid State Physics, Advanced Course NTNU
Problemset 8
Institutt for fysikk
SUGGESTED SOLUTION
Problem 1
(a) Insert |1,2) = Y ax|k, —k) into H|1,2) = E|1,2) to obtain
(H0+Veff§ak|k,—k> :E§|k,—k>. )

Now project this equation down on the adjoint states (k’, —k'| and use that (k', —k'|k, —k) = Op x/
using the orthonormality of these states. Using that Hy|k, —k) = 2¢ |k, —k), we obtain the desired
equation.

(b) The potential is stated to be attractive in a thin-shell +®p around the Fermi surface and zero
elsewhere. Thus, we have

—Vif |ex, —ep| < g and |ep —€p| < @y @)

K, —K |Veglk, —k) =
< Vet ) {0 otherwise

Inserting this into the equation for ag then gives precisely the result stated in the problem text. The
first Heaviside-step function in the problem text mathematically takes care of the fact that the single
particle energies € are larger than €. The two last step functions take care of the fact that the po-
tential is zero unless it lies within the thin shell around the Fermi surface. Thus, the V in the problem
text is the magnitude of the attractive interaction.

(c) We start with
(28k — E)ak, = VZakIO(ek/ —EF)e((D() — |8k/ —EF|)9((,00 — ‘Ek —EF’). (3)
kl
We can rewrite this as
(2er — E)ay, = V/ de a(e)d(e—ex)B(e — EF)0(wo — e — Er|)8(wo — [ex, — Er|)
e
- v/ deD(€)0( — ££)0(wo — & — £])8(w0 — ek — Er|). )
Upon renaming variables, we then obtain
E€F 0o
a(e)(2e—E) =V / de'D(€')a(e)0(o — |e — Er|). )
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(d) To satisfy the above equation, a(€) must have the form

C
a(E) = 28_E9(0)0 — |£k: *EF|) (6)
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where C is an €-independent constant determined by the integral over €.

(e) Inserting the form of a(€) given in (d) into Eq. gives a self-consistent equation for the eigen-

value E:
ert® D(e')de’
1=V / De)de 7)
e 2¢e —E
Assuming that we can replace D(g) with D(gp), as stated in the problem text, and introducing A =
VD(gr), we obtain
erton g/
1=A / . ®)
e 2e — E
This can be rearranged to
1 209
~=In|1+=2] 9
5 =1+~ ©)

where A = 2er — E. Note that since V is a positive quantity, A is positive, and hence A is required for
the solution of the above equation. In effect, £ < 2Ep.

(f) We have

20
Sy
for A < 1. This reveals why a perturbation theory could not have given sensible result for this effect.
Expanding the exponential gives

A= 2mpe—1/A. (10)

A=200(1 —1/A+1/A>—..) (11)

For small A, this means that each term becomes progressively larger, and the series cannot be trun-
cated. Thus, we could not have hoped to obtain this result to any finite order in perturbation theory.

Problem 2
(a) Inserting our wavefunctions ¥'; = p;/ *e®; into the Schrodinger equation for Wy, and Wx and equate
real and imaginary parts, we obtain four equations

90, _ —E(&)lﬂcosy,

ot n\p,
aai’ = —%K(pzpr)”2 sinY,
aapt, = 27[<(L>zr>r)1/2sir1x(- (12)

Here, we defined y =6, — 0.

(b) Using the differential equation for dpy/dt above, we get:
J= ZeZWK(plpr)]/2 siny
= Jpsiny (13)
with Jo = 4K (pip,) /2 /.



