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TFY4245/FY8917 Solid State Physics, Advanced Course

Problemset 8
NTNU

Institutt for fysikk

SUGGESTED SOLUTION

Problem 1
(a) Insert |1,2⟩= ∑k ak|k,−k⟩ into H|1,2⟩= E|1,2⟩ to obtain

(H0 +Veff ∑
k

ak|k,−k⟩= E ∑
k

|k,−k⟩. (1)

Now project this equation down on the adjoint states ⟨k′,−k′| and use that ⟨k′,−k′|k,−k⟩ = δk,k′

using the orthonormality of these states. Using that H0|k,−k⟩ = 2εk|k,−k⟩, we obtain the desired
equation.

(b) The potential is stated to be attractive in a thin-shell ±ω0 around the Fermi surface and zero
elsewhere. Thus, we have

⟨k′,−k′|Veff|k,−k⟩=

{
−V if |εk− εF |< ω0 and |εk′ − εF |< ω0

0 otherwise
(2)

Inserting this into the equation for ak then gives precisely the result stated in the problem text. The
first Heaviside-step function in the problem text mathematically takes care of the fact that the single
particle energies εk are larger than εF . The two last step functions take care of the fact that the po-
tential is zero unless it lies within the thin shell around the Fermi surface. Thus, the V in the problem
text is the magnitude of the attractive interaction.

(c) We start with

(2εk−E)ak =V ∑
k′

ak′θ(εk′ −EF)θ(ω0 −|εk′ −EF |)θ(ω0 −|εk−EF |). (3)

We can rewrite this as

(2εk−E)ak =V
∫

∞

−∞

dε∑
k′

a(ε)δ(ε− εk′)θ(ε−EF)θ(ω0 −|ε−EF |)θ(ω0 −|εk−EF |)

=V
∫

∞

−∞

dεD(ε)θ(ε− εF)θ(ω0 −|ε− εF |)θ(ω0 −|εk−EF |). (4)

Upon renaming variables, we then obtain

a(ε)(2ε−E) =V
∫

εF+ω0

εF

dε
′D(ε′)a(ε′)θ(ω0 −|ε−EF |). (5)

(d) To satisfy the above equation, a(ε) must have the form

a(ε) =
C

2ε−E
θ(ω0 −|εk−EF |) (6)
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where C is an ε-independent constant determined by the integral over ε′.

(e) Inserting the form of a(ε) given in (d) into Eq. (5) gives a self-consistent equation for the eigen-
value E:

1 =V
∫

εF+ω0

εF

D(ε′)dε′

2ε−E
. (7)

Assuming that we can replace D(ε) with D(εF), as stated in the problem text, and introducing λ =
V D(εF), we obtain

1 = λ

∫
εF+ω0

εF

dε′

2ε−E
. (8)

This can be rearranged to
1
λ
= ln

[
1+

2ω0

∆

]
(9)

where ∆ = 2εF −E. Note that since V is a positive quantity, λ is positive, and hence ∆ is required for
the solution of the above equation. In effect, E < 2EF .

(f) We have

∆ =
2ω0

e1/λ −1
≃ 2ω0e−1/λ. (10)

for λ ≪ 1. This reveals why a perturbation theory could not have given sensible result for this effect.
Expanding the exponential gives

∆ = 2ω0(1−1/λ+1/λ
2 − . . .) (11)

For small λ, this means that each term becomes progressively larger, and the series cannot be trun-
cated. Thus, we could not have hoped to obtain this result to any finite order in perturbation theory.

Problem 2
(a) Inserting our wavefunctions Ψ j = ρ

1/2
j eiθ j into the Schrödinger equation for ΨL and ΨR and equate

real and imaginary parts, we obtain four equations

∂φr

∂t
=−K

h̄

(
ρl

ρr

)1/2
cosγ,

∂φl

∂t
=−K

h̄

(
ρr

ρl

)1/2
cosγ,

∂ρr

∂t
=−2K

h̄
(ρlρr)

1/2 sinγ,

∂ρl

∂t
=

2K
h̄
(ρlρr)

1/2 sinγ. (12)

Here, we defined γ = θr −θl .

(b) Using the differential equation for ∂ρL/dt above, we get:

J = 2e
2K
h̄
(ρlρr)

1/2 sinγ

= J0 sinγ (13)

with J0 = 4K(ρlρr)
1/2/h̄.


