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TFY4245/FY8917 Solid State Physics, Advanced Course

Problemset 5
NTNU

Institutt for fysikk

SUGGESTED SOLUTION

Problem 1

(a) Consider the zero-temperature limit, so that fk = θ(kF −k), i.e. a Heaviside-step function. Due to
the spin-degeneracy, the spin sum gives a factor 2. Taking the continuum limit of k in the summation
gives us an integral:

χ0(q) =
2
V

1
(2π)3/V

∫
dk

θ(kF − k)−θ(kF −|k−q|)
h̄2

2m [k
2− (k−q)2]

=
m

2π3h̄2

∫
dk

θ(kF − k)
2k ·q−q2 −

m
2π3h̄2

∫
dp

θ(kF − p)
(p+q)2− p2 (1)

where in the second term we introduced the new variable p ≡ k−q. If we now simply rename the
variable p to k, we obtain

χ0(q) =−
m

2π3h̄2

∫
dkθ(kF − k)

( 1
q2 +2k ·q

+
1

q2−2k ·q

)
. (2)

Perform now the first integral:∫
dkθ(kF − k)

1
q2 +2k ·q

= 2π

∫ kF

0
dk k2

∫
π

0
dφsinφ

1
q2 +2kqcosφ

=
π

q

∫ kF

0
dk k ln

∣∣∣q/(2k)+1
q/(2k)−1

∣∣∣. (3)

The second integral is obtained by q→−q, so that∫
dkθ(kF − k)

1
q2−2k ·q

=−π

q

∫ kF

0
dk k ln

∣∣∣−q/(2k)+1
−q/(2k)−1

∣∣∣
=

π

q

∫ kF

0
dk k ln

∣∣∣q/(2k)+1
q/(2k)−1

∣∣∣. (4)

In total, we therefore have

χ0(q) =−
m

π2h̄2
1
q

∫ kF

0
dk k ln

∣∣∣q/(2k)+1
q/(2k)−1

∣∣∣
=− m

π2h̄2
1
q

[k2

2
ln
∣∣∣q/(2k)+1
q/(2k)−1

∣∣∣−∫
dk k2

( 1
q+2k

+
1

q−2k

)]kF

0

=− m
π2h̄2

1
q

[k2

2
ln
∣∣∣q/(2k)+1
q/(2k)−1

∣∣∣−∫
dk
(
−q/2+q2/4

(
(

1
q+2k

+
1

q−2k

))]kF

0

=− m
π2h̄2

1
q

[(k2

2
− q2

8

)
ln
∣∣∣q/(2k)+1
q/(2k)−1

∣∣∣+ qk
2

]kF

0

=− m
π2h̄2

1
q

[(k2
F

2
− q2

8

)
ln
∣∣∣q/(2kF)+1
q/(2kF)−1

∣∣∣+ qkF

2

]
. (5)
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(b) The dielectric function is obtained from

εr(q,ω) = 1− e2

ε0q2 χ0(q,ω) (6)

which yields

εr(q,0) = 1+
e2

ε0q2
m

π2h̄2q

[qkF

2
+
(k2

F

2
− q2

8

)
ln
∣∣∣q/(2kF)+1
q/(2kF)−1

∣∣∣]. (7)

We see that εr→ ∞ when q→ 0. This is physically reasonable for a metal. We know that the permit-
tivity is a material property that affects the Coulomb force between two point charges in the material.
In particular, the relative permittivity is the factor by which the electric field between the charges is
decreased relative to vacuum.

In metals, we have electrons that can move freely in response to the electric field and thus completely
screen the external field. This means that the ratio of the electric field outside the material and inside
the material is infinite. In other words, since the Coulomb-force between charges is screened in met-
als, the permittivity is infinite.

(c) A metal with free electrons is expected to be able to fully screen any added test charge. Thus, we
expect the displaced charge δQ to equal exactly opposite of the added charge ena0. We compute

δQ = eδn = e
∫

d3rδn(r) = lim
q→0

e
[ 1

εr(q)
−1
]
na(q) =−ena0, (8)

which is thus physically reasonable.

Problem 2
Let us denote the perturbation term

H ′ = ∑
kq

Mq(a
†
−q+aq)c

†
k+qck (9)

The eigenstate of the unperturbed Hamiltonian is denoted |Φ〉 and describes a free electron gas plus a
free magnon gas without any coupling between the two.

The first order correction in perturbation theory is then

E1 = 〈Φ|H ′|Φ〉. (10)

This term has to be zero. The reason is that H ′ is linear in the magnon operators. Thus, the state H ′|Φ〉
will always differ from |Φ〉 with either one extra or one missing phonon, and the overlap between the
states is zero.

Let us then turn to the second order correction. The general expression is

E2 = ∑
m 6=Φ

〈m|H ′|Φ〉〈m|H ′|Φ〉∗

EΦ−Em
(11)
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where |m〉 is an excited state of the unperturbed Hamiltonian and Em its corresponding energy eigen-
value whereas EΦ is the energy eigenvalue of the state |Φ〉. Using that H ′ = (H ′)†, we can rewrite the
above as

E2 = ∑
m 6=Φ

〈m|H ′|Φ〉〈Φ|H ′|m〉
EΦ−Em

= 〈Φ| ∑
m6=Φ

1
EΦ−Em

∑
kq

Mq(a
†
−q+aq)c

†
k+qck|m〉∑

k′q′
〈m|Mq′(a

†
−q′+aq′)c

†
k′+q′ck′ |Φ〉 (12)

We rewrite this expression by using the formula in the lecture notes in the section on Peierls instability:

∑
m6=n

〈n|H ′|m〉〈m|H ′|n〉
E0

n −E0
m

= 〈n|H ′(E0
n −H0)

−1H ′|n〉 (13)

upon defining the operator (E0
n −H0)

−1 whose eigenstates are |m〉 with eigenvalues 1/(E0
n −E0

m) for
n 6= m and eigenvalue zero if n = m. It then follows that in order for the matrix elements to be non-
zero, we need the electron and magnon operators to cancel each others excitations. This happens when
q′ =−q and when k+q = k′, as can be verified by matching annihilation and creation operators for
the electrons and magnons. This leaves us with

E2 = ∑
kq

|Mq|2
[ 1

εk− εk−q+ h̄ω−q
〈Φ|a†

−qc†
kck−qa−qc†

k−qck|Φ〉

+
1

εk− εk−q− h̄ωq
〈Φ|aqc†

kck−qa†
qc†

k−qck|Φ〉
]

(14)

where we relabeled k→ k−q in the summation. This relabeling can be done since we are performing
a summation over all possible momenta k anyway. The energy terms in the denominator are obtained
as follows. We know that EΦ = ∑k εknF(k)+∑q h̄ωqnB(q). Now, the state |m〉 which contributes in
the sum has to differ from Φ in the following ways: it has an extra electron with momentum k−q, a
missing electron with momentum k and either a missing phonon with −q or an extra phonon with q.
Thus, we have

EΦ−Em =−(εk−q− εk− h̄ω−q) = εk− εk−q+ h̄ω−q (15)

in one term and

EΦ−Em =−(εk−q− εk+ h̄ωq) = εk− εk−q− h̄ωq (16)

in the other.

We see that what enters are combinations of creation and annihilation operators that form number
operators of the type b†b (after a commutation of operators for the magnons). The expectation value
of such number operators in the state |Φ〉 is the Fermi-Dirac distribution nF for electrons and Bose-
Einstein distribution nB for magnons. Thus, we obtain the final result:

E2 = ∑
kq

|Mq|2nF(k)[1−nF(k−q)]
[ nB(−q)

εk− εk−q+ h̄ω−q
+

nB(q)+1
εk− εk−q− h̄ωq

]
. (17)

You might ask: but what if for instance the electron state k−q is already present in |Φ〉? Due to the
Pauli principle, |m〉 cannot then differ from |Φ〉 by having an additional electron in the same state.
However, this is accounted for in the above expression due to the expectation values. Namely, we see
that if nF(k−q) = 1, the contribution from that momentum value vanishes in E2 since the process is
not possible.


