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TFY4245/FY8917 Solid State Physics, Advanced Course

Problemset 3
NTNU

Institutt for fysikk

Problem 1
If we apply a static electric field to a metal with free electrons, we would expect a dc electric current
to flow. Let us examine this expectation from a quantum mechanical point of view.

In a metal, electrons move in a periodic potential set up by the crystal lattice. According to Bloch’s
theorem, we know that the solution of the Schrodinger equation with a periodic potential V (r) are
so-called Bloch states ψk. These Bloch states are plane-waves modulated by a periodic function uk
that has the same periodicity as the potential, and are characterized by a wavevector k:

ψk(r) = eik·ruk(r). (1)

These are now eigenstates of the Hamiltonian H0 = p̂2/2m+V (r) with eigenvalue εk:

H0|ψk⟩= εk|ψk⟩. (2)

(a) Compute an expression for the mean velocity

v(k) =
h̄
m
⟨ψk|p̂|ψk⟩ (3)

by first showing that

lim
∆k→0

εk+∆k− εk = ⟨uk|∆Hk|uk⟩ (4)

where you have to identify ∆Hk. Then, use that

1
m
⟨uk|p̂+ h̄k|uk⟩=

1
m
⟨ψk|p̂|ψk⟩. (5)

(b) In the above problem, you should find that the mean velocity (group velocity) is determined by the
dispersion relation εk:

v(k) =
1
h̄

dεk

dk
. (6)

Imagine now that we add an electric field E to the system. The Hamiltonian will take the form
H = H0+φ(r) where −∇φ = qE where q is the charge. We then give a semiclassical argument: since
energy must be conserved, the particle must move in such a way that the energy introduced by the
potential φ(r(t)) from instant t to t +dt into the system must corresponds to the variation of εk(t) in
the same interval. Denoting the variation of φ and εk in this interval dφ and dεk, respectively, we are
effectively stating that:

dεk−dφ = 0. (7)
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Use this equation, and the result v = 1
h̄ dεk/dk derived above, to derive that

h̄k̇ =−qE. (8)

(c) What is semiclassical about the procedure in (b)?

(d) Consider now a specific dispersion relation corresponding for simplicity to electrons moving in
a lattice consisting of a 1D chain of equidistant atoms with periodic boundary conditions. Thus,
εk =−2wcoska where ka = [−π,π) and we used w for the hopping element to avoid confusion with
time t. Solve the system of equations

h̄dk/dt =−qE, vk =
1
h̄

dεk/dk (9)

to find v(t). Integrate the expression you find to identify an expression for the position x(t).

(e) What can we conclude about the motion of electrons in a periodic potential in a static electric field?
This phenomenon is known as Bloch oscillations.

Hang on - are now stating that if we apply an electric field to a metal there should be no net current,
only oscillations? While Bloch oscillations have been experimentally observed, they are very difficult
to measure. Usually, one instead observes precisely a steady-state electric current. The reason for this
is twofold.

One is due to impurities causing scattering of the above Bloch states. When impurities (non-periodic
potential) are accounted for, one no longer observes an oscillatory motion of the electrons but instead
a steady-state current. This can be understood from the fact that the period of the Bloch oscillations is
inversely proportional to the electric field. Thus, for a small electric field the oscillations have a very
long period, and the electrons will encounter an impurity to scatter on (changing their trajectory) long
before an oscillation has been completed. In this case, one obtains instead a net current flow. We will
give an argument for this later in this course when we discuss the so-called Drude conductivity.

The second reason is that even in a ballistic system free of impurities that is connected to two reservoirs
with a potential difference, Bloch oscillations are destroyed by the finite size of the ballistic system
as follows. The quantum mechanical eigenstates of electrons in a periodic potential including also an
external electric field E are so-called Wannier-Stark states. These are localized states, unlike Bloch-
states, with a localization length ∝ 1/E. This means that if the ballistic system is long enough that
there exists well-localized Wannier-Stark states inside the system, without touching or spilling over the
edges into the reservoirs where the voltage has been applied, we should expect Bloch oscillations. This
then requires a long system and/or a strong electric field E to localize the states. Instead, for a small
electric field (small applied voltage), the states begin to extend, leading to more and more of them to
effectively deform and ’escape’ the sample into the reservoirs. It is in this regime that we recover our
expectation of a constant electric current in the system: there exists delocalized, propagating states
inside the ballistic system which can carry current between the reservoirs.

Problem 2
Derive the expression given in the lectures for the temperature-dependent density of electrons in the
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conduction band by completing the following steps.

(a) First, use that the number of electrons per unit volume in the conduction band is

n =
∫

dn =
∫

∞

EC

N(E) f (E)dE (10)

where N(E) is the density of states for electrons and f (E) is the occupancy probability for energy E,
in effect the Fermi-Dirac distribution function. Above, EC is the minimum energy of the conduction
band. First, identify the expressions for N(E) and f (E).

(b) Assume that kBT is much smaller than the distance from the Fermi level EF to the conduction band
energy and show that this approximation gives

n =
4π

h3 (2m∗
e)

3/2
∫

∞

EC

(E −EC)
1/2dE

e(E−EF )/kBT
. (11)

(c) Evaluate the above integral by using that∫
∞

0
x1/2e−x/kBT dx =

(kBT )3/2π1/2

2
(12)

and show that this gives the result for n given in the lectures.


