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TFY4205 Quantum Mechanics 11 NTNU
Problemset 7 fall 2022
Institutt for fysikk
SUGGESTED SOLUTION

Problem 1
When the spin part of the wavefunction is symmetric for identical fermions, the orbital part must be
antisymmetric. Then, the differential scattering cross section is
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At low energies, only the partial waves with the lowest /-values contribute to the general expression
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Since Py = 1, independent of the angle, the contribution from / = 0 to f(8) — f(m — ) vanishes.
The dominant contribution will therefore come from / = 1. We need that P;[cos¥] = cos® and thus

Pj[cos(m—0)] = —cos®. The angle dependence of the differential scattering cross section is there-
fore:
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Problem 2
We have p+eA = —ihiV 4+ e A. Let us first differentiate a product of the form:
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where F is a function of space and time. Thus,
(p+eA) efiezt/(4n80hr) F— efiezt/(émsghr) pF (5)
and
(p_i_eA)ZefieZt/(MteOhr)F — (p_i_eA)efiezt/(zmaohr)pF — e—ie2z/(4nsohr)p2F_ (6)
Setting ¥ = i€’/ (4neohn)\P iy the Schrodinger equation
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we get, with the help of Eq. (??) and the elimination of the exponential functions on both sides:
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which is what we are used to. It is clear that ¥ and ¥ provide the same probability density for position
and they also provide the same probability current density (you can check this explicitly). Hence, the
physics is unchanged.



