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TFY4205 Quantum Mechanics 11 NTNU

Problemset mandatory exercise 2 fall 2022

Institutt for fysikk
SUGGESTED SOLUTION

Problem 1

1. Since the given expression for §; does not depend on energy, the scattering amplitude
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will be proportional to k~!, and the differential cross section will be inversely proportional to
the energy:
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2. For small g, we have
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The phase shifts are negative, as expected for a positive potential as discussed in the lectures.
Inserting this phase-shift into the scattering amplitude and using that |§;| < 1, we get:
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With the help of the generating function for Legendre polynomials
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we get with s = 1 that
iP,(cos 9) = ; (6)
= 2sin(9/2)

The scattering amplitude then becomes
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and scattering cross section
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3. The Born approximation for the scattering cross section is d6/dQ = | f|* with

m
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when integration over the angles is done. Here, ¢ = 2ksin(®/2). For our potential we get
g [ sin& gn
fO)=-=[| —d&f=-=—. (10)
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We have introduced gr = & and used that the last integral is ©/2. Inserting g, the scattering
amplitude in the Born approximation becomes
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This is precisely the same expression as the one we got from the scattering phases.
4. The radial equation for this potential is
R d’u  [RPI(L+1)  Rg
-——— =Eu. 12
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This can be rewritten as
d*u  I(I+1) )
_W+ o u—ku=0. (13)
Here, E = h%k?/2m and
[(T+1)=1(+1)+g. (14)

The rewritten equation now looks like a radial equation without any potential, with the asymp-
totic solution

sin(kr — It /2)

R 15
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The solution of the Schrodinger equation has the following form at large r:
in(kr —Im/249
Ri(r) o sin(kr —Im/2+§;) (16)
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which is used to define the scattering phase shift ;. Comparing the last two equations gives

S =n(l-1)/2. (17)

The only remaining task is to solve the second order equation Eq. (14) with respect to [:
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[=—3£\/(0+1/22+g. (18)

We must use the + sign in front of the square root to ensure that / > 0 (and when g = 0 we must
have [ = [). Inserted, we get

1 i
s,zg(uri— (l+§)2+g). (19)



TFY4205 PROBLEMSET MANDATORY EXERCISE 2 FALL 2022 PAGE 3 OF 3

Problem 2
a) The wavefunction must be defined for r = 0, so only the sin term is allowed (C = 0). Moreover,
the wavefunction is continuous at » = a, whereas its derivative is not continuous due to the d-function

potential. Specifically, consider the radial equation for u (recall that y = R(r) = u(r)/r):
B du
=Eu. 2
“omdr +od(x)u =Eu (20)

Integrating across an infinitesimal interval centered at r = a, i.e. from r = a — € to r = a+ € and taking
limg_,0, we get
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Using now the continuity and derivative boundary condition to get rid of the remaining unknown
constants A and B, we obtain the equation

c+ikagy = (Bs/a+kc)(aoy/s+ 1/k), (22)
where we defined the quantities
B =2mowa/h?, s = sin(ka), ¢ = cos(ka), y = ™. (23)

Solving for ag and taking the limit ka < 1 gives

Ba
~— . 24
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b) The total scattering cross section is
o= [aeisP = [ a0l =n P
= [ dQ|f /dQ ao 4n——. (25)
(1+B)?

As 0, — oo, we get B — oo, which in turn makes ¢ — 4na?. This is the same result as the quantum
mechanical total scattering cross section for low-energy scattering on a hard sphere potential of radius
a.



