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TFY4205 Quantum Mechanics II

Problemset mandatory exercise 1 fall 2022
NTNU

Institutt for fysikk

SUGGESTED SOLUTION

Problem 1
This problem actually also shows that the Berry phase is a real number. Note that the momentum
operator must be Hermitian since it corresponds to a physical quantity, meaning

p̂ = p̂† (1)
h̄
i
∇R =

( h̄
i
∇R

)†
(2)

∇R =−∇
†
R (3)

A first-order derivative is thus anti-Hermitian. Inserting this relationship into the expression of An(R)
we get that 〈n; t|(∇R|n; t〉) = −(〈n; t|(∇R|n; t〉))∗, in which case it is a purely imaginary quantity.
Therefore An(R) must be real.

Alternatively: Remember that a differential operator acts to the right, and that you can differentiate
a ket (or a bra) with respect to the parameters on which it depends, and get a different ket (or bra).
Begin very explicit to make this clear, we have

0 = ∇R[1] (4)

= ∇R[〈n; t|n; t〉] (5)

= ∇R[(〈n; t|)(|n; t〉)] (6)

= (∇R〈n; t|)|n; t〉+ 〈n; t|(∇R|n; t〉) (7)

However, (∇R〈n; t|)|n; t〉= (〈n; t|(∇R|n; t〉))∗. This can be seen as follows. First, note that:

d
dx
〈ψ|φ〉= 〈ψ| d

dx
φ〉+ 〈 d

dx
ψ|φ〉, (8)

where the second term can be evaluated as

〈 d
dx

ψ|φ〉=
∫ dψ∗

dx
φdx = ψ

∗
φ|surface−

∫
ψ
∗ dφ

dx
dx

=−
∫

ψ
∗ dφ

dx
dx

= 〈ψ|− d
dx

φ〉

= 〈ψ|
( d

dx

)†
φ〉

=
(
〈φ| d

dx
ψ〉
)∗

(9)
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Here, we assumed that the surface term in the partial integration vanishes as it should infinitely far
away. So 〈n; t|(∇R|n; t〉) =−(〈n; t|(∇R|n; t〉))∗, in which case it is a purely imaginary quantity. There-
fore An(R) must be real.

Problem 2

a. The original Hamiltonian is

H0 =
h̄ω

2

[
P2 +Q2

]
= h̄ω

[
a†a+

1
2

]
(10)

where a = 1√
2

(
Q+ iP

)
, a† = 1√

2

(
Q− iP

)
. Let

H =
h̄ω

2

[(
P−
√

2x1

)2
+
(

Q−
√

2x2

)2]
(11)

= h̄ω

[(
a†−α

)(
a−α

∗
)
+

1
2

]
(12)

where α = (x1 + ix2) and x1, x2 are two slowly varying real parameter that together describe a
closed curve in the x1x2 plane. We now show that

H = D(α)H0D†(α) (13)

where

D(α) = exp
(
αa†−α

∗a
)

(14)

D†(α) = exp
(
α
∗a−αa†) (15)

To demonstrate (13) we use the identity

eABe−A = B+
[
A,B

]
+

1
2!
[
A,
[
A,B

]]
+ ... (16)

where A = αa†−α∗a and B = a†a. Now,

[a†,a†a] =−a† (17)

[a,a†a] = a (18)

Hence, [
A,
[
A,B

]]
=−

[(
αa†−α

∗a
)
,
(
αa†−α

∗a
)]

(19)

= 2|α|2 (20)

Thus (16) can be written

D(α)a†aD†(α) = a†a−αa†−α
∗a+ |α|2 (21)

which proves (13). Now, the eigenstates of H0 are obviously the number eigenstates |n〉, with the
corresponding eigenvalues En = h̄ω

(
n+ 1

2

)
. Thus we have

H0|n〉= En|n〉 (22)

and therefore
D(α)H0D†(α)D(α)|n〉= HD|n〉= EnD|n〉 (23)

Thus the eigenvalues of H corresponding to the energies En are

|n,α〉= D(α)|n〉 (24)
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b. We have that

D†
∇D = D† ∂D

∂x1
x̂1 +D† ∂D

∂x2
x̂2 (25)

To evaluate the right hand side of (25), use choose A =−i(αa†−α∗a). Then

D† ∂D
∂x1

= e−iA ∂

∂x
eiA (26)

It will soon be clear why we make this choice.

Let g(λ) = eλA ∂

∂x1
e−λA, and Taylor expand around λ = 0:

g(λ) = g(0)+λ
∂g
∂λ

∣∣∣
λ=0

+
λ2

2!
∂2g
∂λ2

∣∣∣
λ=0

+
λ3

3!
∂3g
∂λ3

∣∣∣
λ=0

+ ... (27)

Evaluating each partial derivative, we get

∂g
∂λ

= eλAA
(

∂

∂x
e−λA

)
− eλA

(
∂

∂x
Ae−λA

)
(28)

= eλAA
(

∂

∂x
e−λA

)
− eλA

(
∂A
∂x

)
e−λA− eλAA

(
∂

∂x
e−λA

)
(29)

=−eλA
(

∂A
∂x

)
e−λA (30)

such that
∂g
∂λ

∣∣∣
λ=0

=−∂A
∂x

(31)

Also,

∂2g
∂λ2 =−eλAA

(
∂A
∂x

)
e−λA + eλA

(
∂A
∂x

)
Ae−λA (32)

such that
∂2g
∂λ2

∣∣∣
λ=0

=−
[
A,

∂A
∂x

]
(33)

Similar,
∂3g
∂λ3

∣∣∣
λ=0

=−

[
A,
[
A,

∂A
∂x

]]
(34)

and so forth...

Thus, we can then rewrite (27) as

eλA ∂

∂x1
e−λA =−λ

∂A
∂x
− λ2

2!

[
A,

∂A
∂x

]
− λ3

3!

[
A,
[
A,

∂A
∂x

]]
+ ... (35)

Going back to (25) and let λ =−i, we obtain

D† ∂D
∂x1

= e−iA ∂

∂x1
eiA (36)

=
∂

∂x1

(
αa†−α

∗a
)
− 1

2!

[(
αa†−α

∗a
)
,

∂

∂x1

(
αa†−α

∗a
)]

+ ... (37)

=
(
a†−a

)
− 1

2!

[(
αa†−α

∗a
)
,
(
a†−a

)]
+ ... (38)

=−ix2 +
(
a†−a

)
(39)
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and similarly,

D† ∂D
∂x2

= ix1 +
(
a† +a

)
(40)

Inserting (39) and (40) into (25) we obtain

D†
∇D = [−ix2 +

(
a†−a

)
]x̂1 +[ix1 +

(
a† +a

)
]x̂2 (41)

such that the geometric phase associated with the state |n〉 becomes

γn =
∮
(x2dx1− x1dx2) (42)

which is the same for all values of n. The geometric interpretation can be obtained from Stokes’
theorem. Given a vector field V, we have∮

C
V ·dl =

∫
∇×V · n̂dS (43)

where C is a closed path, and the surface integral on the right hand side is taken over a surface
bounded by C. Let V = x2x̂1− x1x̂2. Then the component of ∇×V in the direction normal to the
x1x2 plane is

∂V2

∂x1
− ∂V1

∂x2
=−2 (44)

Hence, in (42) γn is equal to −2 times the area of the closed loop in the x1x2 plane.

Problem 3

The state vector in spherical coordinates is gives as

|n; t〉= cos
(

θ

2

)
|+〉+ eiφsin

(
θ

2

)
|−〉 (45)

The state |n; t〉 depends on the direction of the magnetic field, and hence we identify the vector-
of-parameters R(t) as the field itself. We set R(t) = B(t) where the magnetic field has a constant
magnitude and polar angle direction, but rotates in the φ-direction.

The gradient ∇R used to compute the Berry-connection is most conveniently expressed in spherical
coordinates for this problem, due to the rotating motion of the magnetic field. We have:

∇R|n; t〉=
[
θ̂

1
R

∂

∂θ
+ φ̂

1
Rsinθ

∂

∂φ

]
|n; t〉 (46)

=−1
2

sin
(

θ

2

)
θ̂

1
R
|+〉+ eiφ 1

2
cos
(

θ

2

)
θ̂

1
R
|−〉+ i

Rsinθ
eiφsin

(
θ

2

)
φ̂|−〉. (47)

Here, R is the field magnitude B = |B|, which is time-independent, while θ and φ are the angles
defining the direction of the magnetic field B. From the above calculation, we see that:

〈n; t|[∇R|n; t〉] = i
Rsinθ

sin2
(

θ

2

)
φ̂,

An(R) = i〈n; t|[∇R|n; t〉] =− 1
Rsinθ

sin2
(

θ

2

)
φ̂ = Aφ(θ)φ̂. (48)
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The Berry curvature is then:

∇R×An(R) = r̂
1
R

1
sinθ

∂

∂θ
(sinθAφ) =−r̂

1
R2sinθ

2
1
2

sin
(

θ

2

)
cos
(

θ

2

)
=−r̂

1
2R2 (49)

The Berry-phase γn can now be obtained as from an integral over a path in parameter space at fixed θ

from (θ,φ) to (θ,φ+2π):

γn(C) =
∮

A ·dR =±π(1− cosθ), (50)

where we used that dR =±Rsinθdφφ̂ and the ± is given by a clockwise or counterclockwise traver-
sion of the cnotour C. We note that the solid angle swept out by the trajectory is given by

∆Ω =
∫

θ

0
sinθdθ

∫ 2π

0
dφ = 2π(1− cosθ), (51)

meaning that the Berry-phase is half of the solid angle subtended by the closed path as seen from the
origo of parameter space. This is consistent with what we have discussed in the lectures, namely that
the Berry phase is a geometrical (topological) phase.


