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observing that the sign of x0−y0 cannot change if x and y are timelike. Thus, the only way to avoid a contradiction
and to make time-ordering well-defined even for spacelike events, is to demand that

〈[φ(x), φ(y)]〉 = [φ(x), φ(y)] = 0 if (x− y)2 < 0. (1.107)

Physically, this ensures that we are preserving causality: first cause, then effect. Let us then check if it our
quantized field φ(x) indeed satisfies [φ(x), φ(y)] = 0 for (x− y)2 < 0.

Firstly, we note that 〈[φ(x), φ(y)]〉 is a Lorentz-scalar (invariant), as we remarked earlier. If it is zero in one frame,
it is zero in all frames. We also know that for spacelike vectors, a frame exists where x and y occur simultaneously:
x0 = y0. This does not violate the condition (x− y)2 < 0. We derived earlier that:

〈φ(x)φ(y)〉) =

∫
d3k

(2π)32ω(k)
e−ik(x−y) (1.108)

for the scalar field. In the frame where x0 = y0, we then have

〈[φ(x), φ(y)]〉 =

∫
d3k

(2π)32ω(k)
[eik·(x−y) − e−ik·(x−y)] = 0 (1.109)

due to the symmetry under k→ (−k), so causality is preserved.

The requirement of commutation goes back to the principle of QM where two measurements, for instance of
φ(x) and φ(y), do not affect each other only if the corresponding operators commute. This must be the case for
measurements made of φ(x) and φ(y) when (x − y)2 < 0, since the spacetime positions of x and y are out of
casual contact: no physical signal can travel the distance from x to y within their time separation.

However, this does not mean that 〈φ(x)φ(y)〉 = 0 for spacelike separation. Let us evalute their Lorentz-invariant
quantity in the frame where x0 = y0. We get

〈φ(x)φ(y)〉 =

∫
d3k

(2π)32ω(k)
eik·(x−y)

=
1

2(2π)3

∫ ∞
0

k2dk

∫ 1

−1
d(cos θ)

∫ 2π

0

dφ
eik cos θ|x−y|
√
k2 +m2

=
1

4π2

∫ ∞
0

kdk√
k2 +m2

sin(k|x− y|)
|x− y|

=
1

8π2|x− y|2

∫ ∞
−∞

zdz

z2 +m2|x− y|2
sin z, (1.110)

where k above is not a 4-vector, but k = |k|. In the last step, we used that the integrand is symmetric in k to expand
its integration range and also changed variable to k|x− y|. Note that the integral can still be written in a Lorentz
invariant waysince in our chosen frame x0 = y0, meaning that |x − y|2 = −(x − y)2. To do the last integral,
observe that we have branch points located at z = ±im|x − y|. To make this text somewhat self-contained, let
us talk a bit about branch points and branch cuts since those will play a role when evaluating integrals later in this
course.

Interlude: branch points and branch cuts
A branch point for a multivalued function in the complex plane is defined as follows: z0 is a branch point for f(z)
if you go around a small circle centered at z0 and end up with a different result for f(z) than you started with.
We will show some practical examples of this below. In some cases, z0 = ∞ is a branch point for a function.
We use here the notation z0 = ∞ for complex infinity: a complex number with infinite magnitude and undefined
argument. Do not be disheartened by the undefined argument: the same is also true for z0 = 0, and that number is
not so scary. In fact, 1/∞ = 0 and 1/0 =∞ are reciprocals of each other. The undefined argument is highlighted
here because the complex infinity discussed above is different from a directed infinity which has infinite magnitude
and a well-defined complex argument, such as limx→o 1/x where x is a positive, real number. We will show below
how to test if z0 =∞ is a branch point.
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Example branch point: let f(z) = [z(z + 1)]1/3. Here, z0 and z0 = −1 are strong candidates for branch points,
which is clear when we set z − z0 = reiθ in order to check the behavior of f(z) when traversing a small circle
centered at z0 (meaning we advance θ from 0 to 2π). First, we try z0 = 0 and obtain

f(z) = [reiθ(reiθ + 1)]1/3. (1.111)

The question is now: is this result invariant if we go from θ to θ + 2π? The factor [(reiθ + 1)]1/3 is invariant, but
the factor [reiθ]1/3 ∝ eiθ/3 is not. We conclude that z0 is a branch point. Same procedure done for z0 = −1 shows
that it is also a branch point. Now what about z0 =∞? Now, to test if z0 =∞ is a branch point for a function, it
can be easier to check if ξ0 = 1/z0 = 0 is a branch point for g(ξ) ≡ f(z) where ξ = 1/z. So let us rewrite f(z) to

g(ξ) =
[1

ξ

(1

ξ
+ 1
)]1/3

. (1.112)

Set ξ = reiθ to test if ξ = 0 is a branch point. If it is, then z =∞ is too. We get

g(ξ) =
1

reiθ/3

( 1

reiθ
+ 1
)1/3

. (1.113)

This is not invariant under θ → θ + 2π, and we have thus found that z0 =∞.

Looking back on the last line of Eq. (1.110), we see that z = ±im|x− y| are branch points of the integrand. Some
useful points to bear in mind regarding branch points:

• Single-valued functions do not have branch points: such points require multivaluedness.

• Branch points are, from the definition we gave, right next to multivalued points of the function. A function
is therefore not analytic at a branch point (analytic = having a derivative and being single-valued in a
neighborhoord around that point).

• A singularity is a where a function fails to be analytic → all branch points are singularities. However: all
singularities are not branch points. For instance,

√
z has one of its branch points at z = 0, which makes this

point a singularity. But while 1/z also has a singularity at z = 0, it is not a branch point of 1/z.

• There is no failproof strategy to find all branch points for a general function. One useful trick is to know
which branch points basic functions like

√
z have, and then try to recast complicated functions into basic

ones which you know the branch points of.

Since branch points tells us that a function is multivalued at some point, it gives us a uniqueness problem
regarding which value of the function we should use at specific points. The solution to this conundrum is the
concept of branch cuts. This is a curve in the complex plane across which the principal value (or a specific
branch) of an analytic, multivalued function is discontinuous. Again, we will give a concrete example of this
below to see how it works. In other words, a branch cut is a curve in the complex plan which makes it possible
to define a single analytic branch of a multivalued function, thus making it single-valued and removing the
problematic ambiguity in the entire complex plane except on the curve itself. The analytic, multivalued func-
tion thus cannot be analytic on the branch cut itself since analyticity implies continuity. The function is instead
singular on the entire branch cut after we have selected a specific branch of the function (such as its principal value).

Example branch cut: the complex logarithm is an example of a multivalued function in the complex plane with a
branch cut. Writing z = reiθ, we have ln(z) = ln(r) + iθ. But θ = θ+ 2πn gives the same complex number z, so
ln(z) is multivalued due to iθ → iθ + 2πi. However, using a branch cut, we can make ln(z) single-valued in the
entire complex plane except on a branch cut which extends from z = 0 to infinity in some direction. Note that
z = 0 is a branch point of ln(z), and so branch cuts have to end on at least one branch point. Conventionally, the
cut is taken as the negative real axis, shown in the figure.
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Branch cut for ln(z)

Formally, we introduce the cut by defining ln(z) to be its principal value: the solution that has an imaginary part
∈ (−π, π]. We then have for ε→ 0+ that

ln(rei(π−ε)) = ln(r) + i(π − ε) (1.114)

whereas

ln(rei(π+ε)) = ln(r) + i(−π + ε). (1.115)

It follows that with ln(z) has a jump of 2πi across the branch cut. Note that z =∞ is seen to be a branch point of
ln(z) by writing ln(1/ξ) = −ln(z). Note that when complex infinity is a branch point, as it is for ln(z), the branch
cut from 0 to complex infinity can be taken in any direction.

Finally, we can return to Eq. (1.110) and evaluate it by using the carefully chosen contour shown in the figure.

Semicircle with
radius ε→ 0

z = +im|x− y|

z = −im|x− y|

R→∞

Note that we could in principle have chosen the branch cuts to run between the two branch points, but then the
integral we are interested in computing

∫∞
−∞ would have crossed the branch cut and could not be performed. Thus,
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for our purpose it is better to extend the cuts to infinity, since the integrand is discontinuous across the branch cuts
and a branch cut has to end on at least one branch point.

Writing ...

I. Problems

1. Prove that the invariance of xµxµ leads to the requirement ηµν = ΛρµηρσΛσν for the Lorentz transformation
tensor.

2. Prove that (Λ−1)σρ = Λ σ
ρ .

3. Prove that (∂2 +m2)GF (x− y) = −iδ4(x− y). Hint: You can start by observing

(∂2 +m2)GF (x− y) =

∫
d3k

(2π)32ω(k)

[
∂x0

(
δ(x0 − y0)e−ik(x−y) − iωθ(x0 − y0)e−ik(x−y)

− δ(y0 − x0)eik(x−y) + iωθ(y0 − x0)eik(x−y)
)

+ (k2 +m2)[θ(x0 − y0)e−ik(x−y) + θ(y0 − x0)eik(x−y)]

]
(1.116)

and then take it from there.
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