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Interlude: branch points and branch cuts

A branch point for a multivalued function in the complex plane is defined as follows: z is a branch point for f(z)
if you go around a small circle centered at zo and end up with a different result for f(z) than you started with.
We will show some practical examples of this below. In some cases, zyp = oo is a branch point for a function.
We use here the notation zy = oo for complex infinity: a complex number with infinite magnitude and undefined
argument. Do not be disheartened by the undefined argument: the same is also true for zy = 0, and that number is
not so scary. In fact, 1/00 = 0 and 1/0 = oo are reciprocals of each other. The undefined argument is highlighted
here because the complex infinity discussed above is different from a directed infinity which has infinite magnitude
and a well-defined complex argument, such as lim,_,, 1/x where x is a positive, real number. We will show below
how to test if zy = oo is a branch point.
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Example branch point: let f(z) = [z(z + 1)]*/3. Here, 2 and zy = —1 are strong candidates for branch points,
0

which is clear when we set z — 2o = e’ in order to check the behavior of f(z) when traversing a small circle
centered at zy (meaning we advance 6 from 0 to 2m). First, we try zg = 0 and obtain

f(z) = [rel? (rel? + 1)1/, (1.111)

The question is now: is this result invariant if we go from 6 to 6 + 272 The factor [(re'? + 1)]'/? is invariant, but
the factor [rel?]'/3 o ¢'/3 is not. We conclude that zj is a branch point. Same procedure done for zy = —1 shows
that it is also a branch point. Now what about zy = co? Now, to test if 2y = oo is a branch point for a function, it
can be easier to check if o = 1/2z¢ = 0 is a branch point for g(§) = f(z) where £ = 1/z. So let us rewrite f(z) to

9(§) = [1(1+1>}1/3. (1.112)

Set & = re'? to test if £ = 0 is a branch point. If it is, then z = oo is too. We get

1 1 1/3
9(§) = reif/3 (@ + 1) ‘ (1.113)

This is not invariant under # — 6 + 27, and we have thus found that zy = oo.

Looking back on the last line of Eq. (1.110), we see that z = +im|x — y| are branch points of the integrand. Some
useful points to bear in mind regarding branch points:

e Single-valued functions do not have branch points: such points require multivaluedness.

e Branch points are, from the definition we gave, right next to multivalued points of the function. A function
is therefore not analytic at a branch point (analytic = having a derivative and being single-valued in a
neighborhoord around that point).

e A singularity is a where a function fails to be analytic — all branch points are singularities. However: all
singularities are not branch points. For instance, 1/z has one of its branch points at z = 0, which makes this
point a singularity. But while 1/z also has a singularity at z = 0, it is not a branch point of 1/z.

e There is no failproof strategy to find all branch points for a general function. One useful trick is to know
which branch points basic functions like /= have, and then try to recast complicated functions into basic
ones which you know the branch points of.

Since branch points tells us that a function is multivalued at some point, it gives us a uniqueness problem
regarding which value of the function we should use at specific points. The solution to this conundrum is the
concept of branch cuts. This is a curve in the complex plane across which the principal value (or a specific
branch) of an analytic, multivalued function is discontinuous. Again, we will give a concrete example of this
below to see how it works. In other words, a branch cut is a curve in the complex plan which makes it possible
to define a single analytic branch of a multivalued function, thus making it single-valued and removing the
problematic ambiguity in the entire complex plane except on the curve itself. The analytic, multivalued func-
tion thus cannot be analytic on the branch cut itself since analyticity implies continuity. The function is instead
singular on the entire branch cut after we have selected a specific branch of the function (such as its principal value).

Example branch cut: the complex logarithm is an example of a multivalued function in the complex plane with a
0

branch cut. Writing z = re'?, we have In(2) = In(r) +if. But @ = 6 + 27n gives the same complex number z, so
In(z) is multivalued due to i@ — i6 + 27i. However, using a branch cut, we can make In(z) single-valued in the
entire complex plane except on a branch cut which extends from z = 0 to infinity in some direction. Note that
z = 0 is a branch point of In(z), and so branch cuts have to end on at least one branch point. Conventionally, the
cut is taken as the negative real axis, shown in the figure.
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A Im

Branch cut for In(z)

Formally, we introduce the cut by defining In(z) to be its principal value: the solution that has an imaginary part
€ (—m, ). We then have for e — 07 that

In(re!™=9) = In(r) +i(r — ¢ (1.114)
whereas
In(re ")) = In(r) + i(—7 + €). (1.115)

It follows that with In(z) has a jump of 27i across the branch cut. Note that z = oo is seen to be a branch point of
In(z) by writing In(1/¢) = —In(z). Note that when complex infinity is a branch point, as it is for In(z), the branch
cut from 0 to complex infinity can be taken in any direction.

Finally, we can return to Eq. (I.TT0) and evaluate it by using the carefully chosen contour shown in the figure.

2 = +im|z — y|

Semicircle with R
radius € — 0

z = —im|z — y|

Note that we could in principle have chosen the branch cuts to run between the two branch points, but then the
integral we are interested in computing | fooo would have crossed the branch cut and could not be performed. Thus,
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for our purpose it is better to extend the cuts to infinity, since the integrand is discontinuous across the branch cuts
and a branch cut has to end on at least one branch point.

I—Problems
+—Prove-that the invariance-of ! #leads-to-the requirement 1y, = ALn,A%, forthe Lorentz transformation
tensor:
2 Prove that{A=1)" = A °.

3—Prove that{62 4+ m2)Gr{x — y)= —idt{z — y)—HintYou can-start by-observing
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and-then-take-it-from-there:
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