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FY3464 Quantum Field Theory NTNU
Problemset 5
Institutt for fysikk
SUGGESTED SOLUTION

Problem 1

The symmetry factor is S = 2 x 2 = 4: factor 2 for two propagators going between two vertices and
factor 2 for the top propagator starting and ending at the same point. Note that there is no factor 2 for
reflection along an axis running upwards through the loops since the original, non-truncated diagram
has different endpoints #; and #,.

The truncated diagram expression is obtained from the non-truncated diagram expression by getting
rid of the operators associated with the end-points (exponentials), getting rid of the integral over the
frequency coming out of/going into the end-points, and finally dividing on a propagator for each end-
point. The non-truncated diagram, starting at #; and ending at #,, is (dropped all internal exponential
factors corresponding to energy flow out of and into vertices, which anyway cancel each other out in
the end):

/d(odwldo)zdcogdcm (—iM)? i vio
(2m)3 s ¢
x G(0)G(01)G(0,)G(03)G(0y)
(—ir)? / dodwdw, ( i )2( i )2 i o-n)
_ e RGN

S (2n)3 > -—mi+ie/ \@?—m}+ie/ w3 —m}+ie

(21)%8(0 + 03 — ) — @4) (0] — @3)

Therefore, the truncated diagram is:
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We perform the integration over ®; first by using
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where ; are the poles of
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contained within the closed contour C. Taking this contour to be the real axis and closing it in the up-
per half-plane, so that the pole @, = —my + i€ is enclosed, we have that [ = [ since the integrand
goes to zero on the semicircle with radius R — oo closing the contour.
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Now in general, the residue of a function f(®)which has a pole of n’th order in @y is given by

n—1
Therefore, for f given in Eq. (4), we have:
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The expression for the diagram is then, after performin the o;-integral, reduced to
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We can now perform the m;-integral using the residue-theorem again. Closing the contour in the upper
half-plane and using that the pole at 0w = —mig + i€ is now of second order for the function
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we find that the residue for f given by Eq. (8) is:
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Using finally S = 4, we then have the final amplitude for the diagram:
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Problem 2
We found in the lectures that up to O(A?), we had generally (without assuming anything about ®):
A A2 A2 1
2 2 2 2
0" —my—Xo(®) ~ O°—mj— - . 11
0= Zo(0) O dmy  32md  8mE @? —9md +ie (b
Rewrite this as:
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We then observe that for ®? ~ 9m%, the dominant terms will be:
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We now omit i€ as it will have no consequence in what follows. Using the above result for &> — m(z) —

Yo (), the propagator now takes the form:
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Clearly, this has a pole at
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But be careful: setting A = 0 does not mean that the propagator has a pole at ®> = 9m% as is obvious
by setting A = 0 in the original equation Eq. (11). Thus, our derived result is only valid for A ## 0 and
for ®? ~ 9m(2).

With the identified pole, we can now identify the residue Z at this pole. Writing in general:
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we see that the residue Z3 at the 3—particle pole Eq. (15) is
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