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FY3464 Quantum Field Theory NTNU
Problemset 3
Institutt for fysikk
SUGGESTED SOLUTION

Problem 1
Using the definition time-ordering operator, we see that
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Acting with the operator 0> 4+ m? on G (9*> = d,0"), we obtain:
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We used above that 8(x) = §(—x). Recall that k> = ® — k* = m? and k° = . This is required in order
for ¢(x) to satisfy its equation of motion. Because of this, the term (—®? 4 k2 4+ m?) is zero. The first
term on the rhs of the second equality sign in the equation above is also zero because:
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by using that 8(x) f(x) = 8(x) f(0). Thus, the above is equal to

dk_ 1 ik-(x— —ik-(x—
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and this expression is equal to zero, as can be seen by performing a variable shift k — —k in the
second term and using that o(k) = o(—k).
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Therefore, all that remains of the original expression (9 4+ m?)Gy is
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Problem 2
We start by noting that the total derivative of £ with respect to coordinate can be rewritten using the
chain rule:
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The term ng = 0V L is zero since we have translational invariance of the Lagrangian. Use now the
Euler—Lagrange equation:
oL oL
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to rewrite Eq. (6) as
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Staring a little bit on the right hand side, we see that we can write it as the derivative of a product as
follows:
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where we used that d,¢ = 8,,(1)0(, as seen from the definition of a total derivative:
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Since d¥ L can be written as N*Vd, L, we can write the equation above as:
d { IL Ny — "VL} —0. (11)
9(9ud0)

The divergence of the expression inside the brackets is thus zero and we have identified the stress-
energy tensor TV satisfying d, T*¥ = 0:
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