PAGE 1 OF 1

FY3464 Quantum Field Theory Problemset 8

Problem 1

By applying N successive infinitesimal Lorentz transformations, letting $N \to \infty$, and using

$$\frac{\mathrm{i}}{2} \varepsilon_{\nu \lambda} [S^{\nu \lambda}, \gamma^{\mu}] = -\varepsilon_{\nu}^{\ \mu} \gamma^{\nu}, \tag{1}$$

show that

$$\Lambda^{\mu}_{\nu}\gamma^{\nu} = U_{\nu}^{-1}(\Lambda)\gamma^{\mu}U_{\nu}(\Lambda), \tag{2}$$

with $U_{\gamma}(\Lambda) = \mathrm{e}^{\mathrm{i}\omega_{\mu\nu}S^{\mu\nu}/2}$ and where Λ^{μ}_{ν} now represents a finite Lorentz transformation. How is $\omega_{\mu\nu}$ related to the N and the infinitesimal Lorentz transformation?

Problem 2

In the lectures, we showed that the solution for the Dirac equation for $k \neq 0$ can be obtained via a boost matrix $U_{\gamma}(\Lambda)$. Assuming that the boost-direction was $+\hat{z}$, we found that

$$u(\mathbf{k}) = U_{\gamma}(\Lambda)\sqrt{m} \begin{pmatrix} \xi \\ \xi \end{pmatrix} \tag{3}$$

where ξ is an arbitrary 2×1 spinor and

$$U_{\gamma}(\Lambda) = e^{-i\eta S^{03}} = \exp\left[-\frac{1}{2}\eta \begin{pmatrix} \sigma^3 & 0\\ 0 & -\sigma^3 \end{pmatrix}\right]$$
 (4)

Show that the solution

$$u(\mathbf{k}) = \begin{pmatrix} \sqrt{k \cdot \sigma} \xi \\ \sqrt{k \cdot \bar{\sigma}} \xi \end{pmatrix} \tag{5}$$

follows from the above equations and that it is valid for any boost direction, in effect any direction of k. Above, \sqrt{A} should be understood as a matrix whose eigenvalues are the square root of the eigenvalues of A.

Hint: $U_{\gamma}(\Lambda)$ is a diagonal matrix. Square its blocks to see what it produces. It is also useful to note that $k \cdot \sigma$ is a Hermitian (self-adjoint) matrix. By the way, this problem is tough - don't despair if you can't solve it entirely. A key purpose with this problem is to make you think hard about how you can approach it.