PAGE 1 OF 1

FY3464 Quantum Field Theory Problemset 11

Problem 1

The term

$$i\bar{\psi}\gamma^5\psi$$
 (1)

is Lorentz invariant. However, it violates CP symmetry. Prove that:

$$CP(i\bar{\psi}\gamma^5\psi)PC = -i\bar{\psi}\gamma^5\psi. \tag{2}$$

Problem 2

Consider a 0+1 fermionic harmonic oscillator. The path integral including source terms $\eta(t)$, $\bar{\eta}(t)$ has the form

$$Z(\eta, \bar{\eta}) = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp\left(i\int dt \left[\bar{\psi}(t)(i\partial_0 - m_0 + i\varepsilon)\psi(t) + \bar{\eta}(t)\psi(t) + \bar{\psi}(t)\eta(t)\right]\right). \tag{3}$$

Show in detail how it may be rewritten to

$$Z(\eta,\bar{\eta}) = Z(0,0)e^{-\int dt\bar{\eta}(t)S_F\eta(t)}$$
(4)

where $S_F(t-t')$ is the analog of the Dirac propagator in 3+1 dimensions, satisfying:

$$(\mathrm{i}\partial_0 - m_0)S_F(t - t') = \mathrm{i}\delta(t - t'),\tag{5}$$

and where we also defined

$$S_F \eta(t) \equiv \int dt' S_F(t-t') \eta(t'), \ \bar{\eta} S_F(t) = \int dt' \bar{\eta}(t') S_F(t'-t). \tag{6}$$

Hint: it may be useful to use the complete-square-and-shift-variables trick.

Problem 3

We saw in the lectures that if m = 0 in the Dirac Lagrangian, the left-handed and right-handed spinors decouple. While this is clear mathematically, can you think of a physical argument for why this decoupling occurs, while it is not possible for $m \neq 0$?