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3.1.2 Time-energy uncertainty: what it really means

Whereas the preceeding uncertainty relation ∆x∆px ≥ ℏ/2 is well-defined mathematically and in
terms of physical meaning, one often encounters a similar uncertainty relation involving time and
energy in the literature. It has the form

∆E∆t ≥ ℏ/2. (3.2)

The problem with this relation is that it is not immediately clear how it is obtained or what it
even means. For instance, while there is an energy operator in QM (the Hamiltonian Ĥ), there is
no time operator T̂ in QM. In fact, time is an independent variable in non-relativistic QM. Thus,
from the very outset it is clear that we cannot derive Eq. (3.2) in the same way as Eq. (3.1),
the latter requiring well-defined position and momentum operators. Moreover, what does ∆t even
mean? This has caused a lot of discussion regarding the existence and meaning of Eq. (3.2) and,
unfortunately, some gross misinterpretations of it. Here, we will show (as was originally done in
Ref. [30]) that Eq. (3.2) can be derived in non-relativistic QM as long as one properly defines the
meaning of ∆E and ∆t. Then, we will discuss its physical interpretation. We note in passing that
one can also derive uncertainty principles of similar form as the well-known non-relativistic ones,
albeit with relativistic corrections.

Before proceeding, let us briefly remind ourselves of the difference between stationary and non-
stationary states. A stationary state Ψn solves both the time-dependent SE and is an eigenfunction
of a time-independent H at the same time. It can be written as Ψn = ψne

−iEnt/ℏ where ψ is an
eigenfunction of H while E is the belonging eigenenergy. If the system is in a stationary state, all
expectation values of observable quantities are time-independent.

Now, according to the superposition principle we also know that any linear combination of stationary
states will also be a solution to the time-dependent SE, so that a general physical state of the system
(still for a time-independent Hamiltonian) may be written as

Ψ =
∑
n

cnΨn =
∑
n

cnψne
−iEnt/ℏ. (3.3)

The key point is that Ψ is no longer an eigenfunction of Ĥ, meaning that Ψ is not a stationary
state. Both the probability density |Ψ|2 and the expectation value of physical observables may now
depend on time, and energy is not sharply defined anymore (∆E ̸= 0).

Let us now sketch the proof of Eq. (3.2). Let H be a time-independent Hamiltonian and let Ψ
be the wavefunction of the system (but not necessarily stationary). In that case, we can show
that in the Heisenberg picture (where the time-dependence is placed on the operators whereas the
wavefunctions are time-independent), the expectation value of a quantity A that does not depend
on time (∂A/∂t = 0) explicitly satisfies:

d

dt
⟨A⟩ = 1

iℏ
⟨[A,H]⟩ (3.4)

Let ∆A and ∆E denote the root-mean-square deviations (also known as standard deviations) of A
and H, respectively:

∆A =
√
⟨A2⟩ − ⟨A⟩2. (3.5)
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Figure 3.1: Sketch of energy-dependence of scattering cross section (or the number of detected events
of a particular reaction) with a peak and corresponding linewidth that is inversely proportional to
the lifetime of the decaying particle. Figure taken from https://web2.ph.utexas.edu/~vadim/

Classes/2019f/resonances.pdf.

One can then show that (see e.g. chapter 3 in Griffiths QM book) ∆A ·∆E ≥ 1
2 |⟨[A,H]⟩| using these

definitions. Inserting our above expression for the commutator between A and H, one obtains:

∆E · ∆A

|d⟨A⟩/dt| ≥ ℏ/2. (3.6)

which may be written precisely as

∆E∆t ≥ ℏ/2, (3.7)

if we define

∆t ≡ ∆A

|d⟨A⟩/dt| . (3.8)

The crucial point regarding the physical interpretation of this uncertainty relation between ∆E and
∆t is to recognize what ∆t means. From its definition above, we see that ∆t is the time required
for the expectation value of A to change by an amount equal to its standard deviation ∆A. Put in
more informal terms, it is the time required for the expectation value of A to change appreciably
(with ”appreciably” quantitatively being defined by the standard deviation).

If the system is in a stationary state, then we know that d⟨A⟩/dt = 0 so that ∆t → ∞, but that
is perfectly fine since ∆E → 0 then and the inequality is still valid. For a non-stationary state,
however, ∆E ̸= 0 is the standard deviation of the Hamiltonian H and ∆t can be thought of as the
lifetime of the state Ψ with respect to the observable A, according to our above explanation. More
precisely, it is the time interval after which the expectation value of A has changed appreciably (as
defined via the standard deviation of A).

How do we interpret this physically? One consequence is that a state that exists only for a short
time cannot have a well-defined energy. For instance, an excited state in a condensed matter sys-
tem that has a finite lifetime will then release a slightly different energy each time it decays, and
the spread in this energy will be larger (meaning larger ∆E) the shorter its lifetime ∆t. For a
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long-lived excitation ∆t→ ∞, energy becomes well-defined ∆E → 0. This uncertainty in energy is
reflected in the natural linewidth of the distribution of energies released by state that has decayed
in this manner: fast-decaying states have a broad linewidth. The same principle also applies to
fast-decaying particles in particle physics: the faster the particle decays, the shorter its lifetime and
the less certain is its mass. We note that to detect particles with long lifetimes, one can simply
observe the distance they propagate before decaying, which historically was done using e.g. bub-
ble chambers. This no longer becomes possible for particles with lifetimes as short as for instance
τ → 10−20 s decaying via the strong interaction, since they propagate extremely short distances
before disintegrating.

The above reasoning seems to suggest that there should be a strong link between the time-energy
uncertainty relation and the concept of quantum fluctuations. A well-known example of a quantum
fluctuation in particle physics is the bubble polarization diagram where a photon is converted into
a temporary electron-positron pair which then collapses back into a photon. The fact that there
exists confusing statements in the literature, such as that this can happen because the e−− e+ pair
”borrows” energy from the environment, just underlines the importance of correctly interpreting
what the time-energy uncertainty relation means.

In light of the explanation we’ve given above, we can now understand that the reason that such
spontaneous particle pairs can occur as a quantum fluctuation is that the energy of vacuum cannot
be sharply defined/accurately determined. In a cartoon picture, one can think of the vacuum fields
”jittering” constantly and thus have what is referred to as a zero-point energy, the latter statement
really just expressing that ∆E ̸= 0. Now, because of this uncertainty in the energy of vacuum,
we are allowed to create spontaneous pairs corresponding to the bubble diagram in particle physics
that exist a finite time ∆t as long as ∆E∆t ≥ ℏ/2. Please note the important distinction between
saying that energy is not sharply defined, which is a statistical statement, and saying that energy
can appear out of nothing or being ”borrowed” from some ill-defined environment. Vacuum is not a
stationary state, because in that case we would have ∆E = 0. Note that a Hamiltonian describing
vacuum can still be time-independent even if it is non-stationary.


