Formulae that may be useful. The meaning of the symbols is assumed to be known.

$$\bar{\Psi} \equiv \Psi^{\dagger} \gamma^{0}, \ \gamma^{5} \equiv i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}, \ \bar{\Gamma} \equiv \gamma^{0} \Gamma^{\dagger} \gamma^{0}, \ \sum_{s=1,2} u^{(s)} \bar{u}^{(s)} = (\gamma^{\mu} p_{\mu} + mc), \ \sum_{s=1,2} v^{(s)} \bar{v}^{(s)} = (\gamma^{\mu} p_{\mu} - mc),$$

$$(\gamma^{0})^{\dagger} = \gamma^{0}, \ (\gamma^{0})^{2} = 1, \ \gamma^{\nu} = \gamma^{0} (\gamma^{\nu})^{\dagger} \gamma^{0}.$$

$$(4)$$

Internal lines for some particles: $-\mathrm{i}g_{\mu\nu}/q^2, \frac{-\mathrm{i}(g_{\mu\nu}-q_{\mu}q_{\nu}/M^2c^2)}{q^2-M^2c^2}$.

Some vertex factors for various interactions: $ig_e \gamma^\mu$, $-\frac{ig_{W,Z}}{2\sqrt{2}} \gamma^\mu (1 - \gamma^5)$.

A Lagrangian describing some type of field: $\mathcal{L} = i\hbar c \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi - mc^2 \bar{\psi} \psi$.

Trace theorems: (below I use the notation $a' \equiv a^{\mu} \gamma_{\mu}$)

$$Tr(A+B) = Tr(A) + Tr(B), Tr(\alpha A) = \alpha Tr(A), Tr(ABC) = Tr(CAB) = Tr(BCA).$$
(5)

$$g_{\mu\nu}g^{\mu\nu} = 4, \ \{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}, \ a'b' + b'a' = 2ab.$$
 (6)

$$\gamma_{\mu}\gamma^{\mu} = 4, \ \gamma_{\mu}\gamma^{\nu}\gamma^{\mu} = -2\gamma^{\nu}, \ \gamma_{\mu}\gamma^{\nu}\gamma^{\lambda}\gamma^{\mu} = 4g^{\nu\lambda}. \tag{7}$$

$$\gamma_{\mu}\gamma^{\nu}\gamma^{\lambda}\gamma^{\sigma}\gamma^{\mu} = -2\gamma^{\sigma}\gamma^{\lambda}\gamma^{\nu}, \ \gamma_{\mu}a'\gamma^{\mu} = -2a'. \tag{8}$$

$$\gamma_{\mu}a'b'\gamma^{\mu} = 4ab, \ \gamma_{\mu}a'b'c'\gamma^{\mu} = -2c'b'a'. \tag{9}$$

$$Tr(\gamma^{\mu}\gamma^{\nu}) = 4g^{\mu\nu}, Tr(\gamma^{\mu}\gamma^{\nu}\gamma^{\lambda}\gamma^{\sigma}) = 4(g^{\mu\nu}g^{\lambda\sigma} - g^{\mu\lambda}g^{\nu\sigma} + g^{\mu\sigma}g^{\nu\lambda}). \tag{10}$$

$$Tr(a'b') = 4ab, Tr(a'b'c'd') = 4[(ab)(cd) - (ac)(bd) + (ad)(bc)], \gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3.$$
(11)

$$Tr(\gamma^5) = 0, Tr(\gamma^5 \gamma^\mu \gamma^\nu) = 0, Tr(\gamma^5 \gamma^\mu \gamma^\nu \gamma^\lambda \gamma^\sigma) = 4i\epsilon^{\mu\nu\lambda\sigma}.$$
 (12)

$$Tr(\gamma^5 a'b') = 0, Tr(\gamma^5 a'b'c'd') = 4i\varepsilon^{\mu\nu\lambda\sigma}a_{\mu}b_{\nu}c_{\lambda}d_{\sigma},$$
 (13)

where $\varepsilon^{\mu\nu\lambda\sigma}$ is -1 if $\mu\nu\lambda\sigma$ is an even permutation of 0123, +1 if it is an odd permutation, 0 if any two indices are the same. Finally, the trace over an odd number of γ matrices is zero. One has that $\varepsilon^{\mu\nu\lambda\sigma}\varepsilon_{\mu\nu\kappa\tau}=-2(\delta^{\lambda}_{\kappa}\delta^{\sigma}_{\tau}-\delta^{\lambda}_{\tau}\delta^{\sigma}_{\kappa})$ where δ^{μ}_{ν} is the Kronecker delta-function (equal to 1 if $\mu=\nu$, 0 otherwise)