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FY3403 Particle physics

Problemset Extra
NTNU

Institutt for fysikk

SUGGESTED SOLUTION

Problem 1
Particles are introduced into the standard model by placing quantum fields in irreducible representa-
tions of the standard model symmetry group gsm = SU(3)×SU(2)×U(1). This exercise is not meant
to introduce all the machinery necessary to understand such a statement, but to motivate the use of
representation theory in particle physics.

Representation theory is all about representing objects that are abstractly challenging (e.g. groups)
with matrices acting on vectors. Representation theory is a vast and ubiquitous subject studied by
mathematicians and physicists alike. We shall, however, showcase its use in phenomenological par-
ticle physics by the means of a toy model. Groups arise in physics as symmetries, and we shall look
into the treatment of the (approximate) symmetry isospin.

Isospin conservation stems from the invariance of some physical processes under the action u→ d
and d→ u. We model this, however, not as a discrete symmetry (like i.e. parity), but as a continuous
G = SU(2) symmetry. It is important to realise that what we are actually doing is guessing on a group
(G) and comparing the predictions following from that guess with the actual world. Had they not
matched, the initial guess would have been wrong. One prediction we should find is the existence of
two particles (up and down quark) which are equivalent to each other (at least as far as this symmetry
is concerned).

Think of an element g ∈ G = SU(2) as some abstract entity which can be represented as a matrix
Mg ∈ C2×2 with unit determinant. The map g→ Mg must obey the group structure of G, and we
therefore require

g1 ·g2 = g3↔Mg1@Mg2 = Mg3 (1)

where the @ on the right is regular matrix multiplication. The map g→Mg is what mathematicians
actually call a representation, because you are representing the abstract elements g ∈ G by the much
more hands-on matrices Mg ∈C2×2 in a product-preserving way. The representation is 2-dimensional,
because the vector space on which the matrices act is 2-dimensional.

a) The Mg matrices act on a 2-dimensional Hilbert space H . Let |u〉 and |d〉 be two orthonormal
vectors in H . Show that for all g ∈ G, the inner products in this subspace is unaffected by the trans-
formation Mg. (Hint: think of |u〉 and |d〉 as unit vectors in Euclidean space)

SOLUTION: Set

u =

(
1
0

)
d =

(
0
1

)
(2)

Any |ψ〉 = a |u〉+ b |v〉 can therefore be parameterized by the 2-dimensional vector
(
a b

)
. The
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matrices Mg for g ∈ G induce the transformation

|ψ〉 →
∣∣ψ′〉= Mg |ψ〉 (3)(

a
b

)
→Mg

(
a
b

)
(4)

Let |φ〉= α |u〉+β |d〉. Then 〈
ψ
′∣∣φ′〉= 〈ψ|M†

gMg |φ〉= 〈ψ| |φ〉 (5)

because M†
gMg = I2×2.

b) If we assume the representation g→ Mg combined with the Hilbert space H is a suitable model
of the universe, then, as all observables of quantum mechanics are given by inner products as above
(see the zeroth axiom of the Wightman axioms), quantum mechanics should be invariant under the
action of SU(2). If we now name |u〉 as ’up-quark’ and |d〉 as ’down-quark’, these assumptions have
predicted the existence of two particles. This begs the question: does there exist higher dimensional
representations of SU(2)? The answer is ’yes’ and you have actually seen them in quantum mechanics
when you worked with angular momentum.

The (irreducible1) representations Rl of SU(2) are labeled by the total angular momentum quantum
number l. Their dimensions dl are the number of different angular momentum eigenstates sharing the
same l. For l = 0, 1

2 ,1,
3
2 , what is dl?

SOLUTION: The number of different total angular momentum eigenstates |l,m〉 follows from stan-
dard quantum mechanics and we get dl = 2 · l +1. Thus d0 = 1,d 1

2
= 2,d1 = 3 and d 3

2
= 4.

c) In physics nomenclature, we say that we place a particle field in the Rl representation of SU(2).
What this means is that we postulate the existence of dl particles transforming into each other under
the action of SU(2) and that all of these particles are (from the symmetry point of view) the same.
With this language, we would rephrase our previous prediction (the up and down quarks) by saying
the universe has a particle field in the R 1

2
representation of SU(2).

Consider figure 1. Analogously to what we did with u and d above, in what representations Rl of
SU(2) would you place the Ω,Ξ,Σ and ∆ baryons?

SOLUTION: This is a question of number matching. There is only one Ω baryon, and we would
therefore pick R0 (being the only representation of dimension 1). Similarly, the ∆ baryon would be
placed in R 3

2
, because d 3

2
= 4. Following this logic, we end up with

Ω ∈ R1

Ξ ∈ R 1
2

Σ ∈ R1

∆ ∈ R 3
2

1It is important that the representations are irreducible. See for example here

https://en.wikipedia.org/wiki/Wightman_axioms
https://en.wikipedia.org/wiki/Particle_physics_and_representation_theory
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Figure 1: The baryon decuplet (figure from Wikipedia).

We assumed that there exists particles in these representations, and nature provided us with the
baryons. In quantum field theory, the (say) ∆ baryon would be modeled as a 4-dimensional field
whose components transform into each other under the action of SU(2). Any interaction term that
only cares about the four-dimensional field ∆ as a whole and not its individual components, would
then preserve the isospin structure.

d) Which representation Rl would you choose to model the pion?

SOLUTION: The 3 different pions have total isospin l = 1 and are therefore (isospin-wise) equal to
the Σ. Thus I would use R1.

e) Why are there no particles in the universe represented by R2?

SOLUTION: This is rather a trick question and starts on the wrong side of how physics works. Go-
ing through the toy model above, we did not at any point use the fact that nature has given us some
particles. As theorists, we guessed that there are particles in the four lowest representation of SU(2)
and showed that nature actually has given us these particles. Had one of the particles been missing,
say Σ−, then our model would be wrong.

The standard model does not give any answer to the question why these specific representations2. It
states as an axiom the representations concerned and show that it is a good match of nature. This is
one of the absolute main drawbacks of the standard model.

Problem 2

2This is actually one of the maingoals of Grand Unified Theories

https://en.wikipedia.org/wiki/Grand_Unified_Theory
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This exercise is meant to illustrate the important mechanism of spontaneous symmetry breaking,
where a symmetric potential can lead to ground states where the symmetry is in some sense ’lost’.

Consider a classical particle parameterized by the two-dimensional coordinate r = (x(t),y(t)), and let
it travel according to the following Hamiltonian

H =
1
2
(mẋ2 + ẏ2)−V (x,y) (6)

where V (x,y) = a(x2 + y2)+b(x2 + y2)2 = a(x2 + y2)+b(x4 +2x2y2 + y4).

a) What symmetries does the potential posses?

SOLUTION: Rotationally symmetric around the z-axis.

b) Consider the case a,b > 0. What is the minimum of the potential? At which point does this mini-
mum occur?

SOLUTION: if a and b are positive, then the potential is nonnegative. This implies x = y = 0 is the
only minimum of the potential with V (0,0) = 0.

c) Suppose a particle is situated at the minimum (xmin,ymin). A way to check if this minimum is stable
is to change to polar coordinates centered at (xmin,ymin) and calculate how the potential looks like
locally around r = 0. Taylor expand V (x,y) around (xmin,ymin) to second order and express the result
in polar coordinates. Argue whether the minima are stable or not.

SOLUTION: As we are using polar coordinates centered at the origin, this is just regular polar coor-
dinates. Let x= (x,y) and x0 = (xmin,ymin)

V (x,y)≈V (x0)+∇V (x0)(x−x0)+
1
2
(x−x0)

T H(x0)(x−x0). (7)

We thus need the gradient and the hessian of the potential, which are

∇V =

(
2ax+4bx(x2 + y2)
2ay+4by(x2 + y2)

)
, H =

(
2a+8bx2 +4b(x2 + y2) 8bxy

8bxy 2a+8by2 +4b(x2 + y2)

)
(8)

which at (0,0) gives

∇V (0,0) =
(

0
0

)
H(0,0) =

(
2a 0
0 2a

)
. (9)

We thus end up with
V (x,y)≈ a(x2 + y2) = ar2 (10)

which, of course, match the potential above. The potential is stable, since any perturbation r > 0
would lead to an increase in the energy.

d) Consider now the case a < 0 < b. What is the minimal value now? At which point(s) does this
minimal value occur?
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SOLUTION:

V (r) = ar2 +br4 = b(r4 +
a
b

r2) = b(r2 +
a
2b

)2− a2

4b
(11)

has the minimal value

− a2

4b
(12)

when
r2 =− a

2b
, (13)

that is for all values x and y on the circle of radius − a
2b .

e) Pick one of the points where the minimal value occur and do the Taylor expansion as above. Argue
whether your minima is stable or not. (Hint: remember to use polar coordinates centered at the point
you chose)

SOLUTION: The calculation of the derivative is the same as above. The only difference is the base
point of the polar coordinates, which I choose to be (

√
− a

2b ,0) on the positive x-axis. From the
derivatives above, one obtains

∇V (x0) =

√
− a

2b

(
2a+4b(− a

2b)
0

)
=

(
0
0

)
(14)

H(x0) =

(
2a+8b−a

2b +4b−a
2b 0

0 2a+4b−a
2b

)
=

(
−4a 0

0 0

)
(15)

This gives the approximate potential

V (x,y)≈− a2

4b
−2a(x−

√
−a
2b

)2 (16)

Combining this last equation with the polar coordinates

x =
√
− a

2b
+ r cos(θ)

y = r sin(θ)

Gives

V (r,θ) =− a2

4b
−2ar2 cos2(θ) (17)

As a < 0 and cos2(θ)≥ 0, the r2 term is always non-negative. However, for θ = π

2 , it vanishes! If you
draw a picture, you will see something like figure 2. From the figure, it is clear that θ = π

2 corresponds
to moving along the trough and show therefore that the ground states are unstable. From the particle
point of view, it would seem that the original symmetry is lost due to the θ-dependence of equation
(17).

f) If you have done all the above exercises correctly, you will have observed that the ground state in c
is stable and retains the original symmetry of the potential, whereas the ground state(s) in d does not.
At what point in your calculation in d do you actually lose the symmetry of the initial problem?
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Figure 2: The Mexican hat potential.

SOLUTION: It is important to realise that it was our choice of ground state (
√
− a

2b ,0) that broke
the symmetry. What is the physical justification for choosing a state like this? The answer is that
nature would do the same! The origin is no longer a stable extrema of the potential, and the instability
would make any perturbation from (0,0) push the system towards one of the true minimizers (down
in the trough). The universe still posses the original rotational symmetry, but it is only reflected in the
collection of ground states as a whole and not in any particular one (all points on a circle corresponded
to a ground state).

Phenomena like these, where the original rotational symmetry is lost in each of the ground states, but
is retained if you look at the collection of ground states, are called Spontaneous Symmetry Breaking.
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Problem 3
A full treatment of the Higgs mechanism in the Standard model requires writing down a formidable
Lagrangian taking into account interactions between many different fields. This exercise is instead
meant to show the basic mechanism by which mass terms can be modified in a Lagrangian when
symmetries are broken.

Consider the Lagrangian

L =
1
2

mẋ2−V (x),V (x) =−ax2 +bx4 (18)

where a,b > 0.

a) Complete the square in the potential term and discard any constants.

SOLUTION:

V (x) = b(x4− a
b

x2) = b(x2− a
2b

)2− a2

4b
' b(x2− a

2b
)2 ≡ by2 (19)

b) Introduce the variable y = x2− a
2b and write L as a function of y.

SOLUTION:
ẏ = 2xẋ→ ẋ =

ẏ
2x

=
ẏ

2
√

y+ a
2b

(20)

giving

L(y) =
1
2

m
ẏ2

2a
b +4y

−by2 (21)

c) Assume y is small and Taylor expand to leading order. What is the mass term in this new La-
grangian?

SOLUTION: The only length scale we have to compare y to is a
2b thus y being small means y/ a

2b � 1.
This gives

L(y)≈ 1
2

mẏ2(
2a
b
−4y)−by2 =

1
2

2ma
2

ẏ2−Ṽ (y, ẏ),Ṽ (y, ẏ) = by2 +2mẏ2y (22)

We observe that the mass term has been modified and that there are new interactions (see the last term
in the modified potential).


