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FY3403 Particle physics

Problemset 5
NTNU

Institutt for fysikk

SUGGESTED SOLUTION

Problem 1
The general strategy for identifying the isospin classification is to look at (i) how many particles of a
given type (for instance Σ) that exist with a given strangeness content, (ii) the charge of the specific
particle we are asked to identify, and (iii) if the particle in question has zero up or down quarks. Let
us look at some examples.

If the particle has no up or down quarks, it has isospin I = I3 = 0. Therefore, the Ω-particles have zero
isospin.

If we instead consider the Σ-particles, there are three of them. This means that I = 1 since the number
of particles in an isospin multiplet should be 2I +1. The one with highest charge is the Σ+, and thus
it has (I, I3) = (1,1).

If we look at the ∆-particles, there are four of them. Thus, I = 3/2. The ∆0 has the second lowest
charge. Therefore, it is the I3 =−1/2 state in that multiplet.

If we consider a meson like the K̄0, we know that I = 1/2 since the K̄0 and K̄− belong to the same
isospin multiplet, as seen in the Meson octet. The K0 and K+ belong to a separate isospin multiplet
since their strangeness is different than K̄0 and K̄− and strangeness is conserved in strong interactions.
Since K̄0 has the highest charge in its multiplet, it is the I3 = 1/2 state.

For the η-particle, it is an isospin singlet since η′ has different strangeness content, so I = I3 = 0 for η.

Following these rules, we arrive at:

(i) Ω−: |II3⟩= |00⟩.
(ii) Σ+: |II3⟩= |11⟩.
(iii) Ξ0: |II3⟩= |1

2
1
2⟩.

(iv) ∆0: |II3⟩= |3
2 −

1
2⟩.

(v) ρ+: |II3⟩= |11⟩.
(vi) η: |II3⟩= |00⟩.
(vii) K̄0: |II3⟩= |1

2
1
2⟩.

Problem 2
The decomposition of the states is done by looking up the Clebsch-Gordon coefficients, which can be
found in the Particle Data Group webpage: https://pdg.lbl.gov/2002/clebrpp.pdf.

https://pdg.lbl.gov/2002/clebrpp.pdf
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Below, I give some details for the first few problems.

a) 1. |11⟩|1
2

1
2⟩= |3

2
3
2⟩.

To see this, first find the table in the above link for the 1×1/2 state (second table from the top, to the
left). Then look at the m1 = 1,m2 = 1/2 row, since those are the quantum numbers we have in our
state |11⟩|1

2
1
2⟩. This gives a coefficient of unity for the state j = 1,m = 1.

2. |10⟩|1
2

1
2⟩=

√
2/3|3

2
1
2⟩−

√
1/3|1

2
1
2⟩.

To see this, first find the table in the above link for the 1×1/2 state (second table from the top, to the
left). Then look at the m1 = 0,m2 = 1/2 row, since those are the quantum numbers we have in our
state |10⟩|1

2
1
2⟩. This gives a coefficient

√
2/3 for the state with j = 3/2,m = 1/2 and a coefficient

−
√

1/3 for the j = 1/2,m = 1/2 state.

3. |1−1⟩|1
2

1
2⟩=

√
1/3|3

2 −
1
2⟩−

√
2/3|1

2 −
1
2⟩.

4. |11⟩|1
2 −

1
2⟩=

√
1/3|3

2
1
2⟩+

√
2/3|1

2
1
2⟩.

5. |10⟩|1
2 −

1
2⟩=

√
2/3|3

2 −
1
2⟩+

√
1/3|1

2 −
1
2⟩.

6. |1−1⟩|1
2 −

1
2⟩= |3

2 −
3
2⟩.

7. Left hand side: |11⟩|1
2 −

1
2⟩=

√
1/3|3

2
1
2⟩+

√
2/3|1

2
1
2⟩.

Right hand side: |10⟩|1
2

1
2⟩=

√
2/3|3

2
1
2⟩−

√
1/3|1

2
1
2⟩.

8. Left hand side: |10⟩|1
2

1
2⟩=

√
2/3|3

2
1
2⟩−

√
1/3|1

2
1
2⟩.

Right hand side: |11⟩|1
2 −

1
2⟩=

√
1/3|3

2
1
2⟩+

√
2/3|1

2
1
2⟩.

9. Left hand side: |10⟩|1
2 −

1
2⟩=

√
2/3|3

2 −
1
2⟩+

√
1/3|1

2 −
1
2⟩.

Right hand side: |1−1⟩|1
2

1
2⟩=

√
1/3|3

2 −
1
2⟩−

√
2/3|1

2 −
1
2⟩.

10. Left hand side: |1−1⟩|1
2

1
2⟩=

√
1/3|3

2 −
1
2⟩−

√
2/3|1

2 −
1
2⟩.

Right hand side: |10⟩|1
2 −

1
2⟩=

√
2/3|3

2 −
1
2⟩+

√
1/3|1

2 −
1
2⟩.

b) We find from the above results, by looking at the belonging coefficients, that

M1 = M6 = M (3/2) (1)

M2 = M5 =
2
3

M (3/2)+
1
3

M (1/2) (2)

M3 = M4 =
1
3

M (3/2)+
2
3

M (1/2) (3)

M7 = M8 = M9 +M10 =
√

2/3(M (3/2)−M (1/2)). (4)

c) We have essentially three unknown quantities: the absolute value of the two amplitudes M (3/2) and
M (1/2), and the relative phase between them. We thus have the following connections between the
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scattering cross sections:

σ1 = σ6 = A2 (5)

σ2 = σ5 = (4/9)A2 +(1/9)B2 +(4/9)ABcosφ (6)

σ3 = σ4 = (1/9)A2 +(4/9)B2 +(4/9)ABcosφ (7)

σ7 = σ8 = σ9 = σ10 = (2/9)A2 +(2/9)B2 − (4/9)ABcosφ. (8)

This implies the following relations between the cross sections

σ1 +σ3 = 2σ2 +σ7. (9)

in addition to the identities already written down.
d) When we assume A ≫ B, we obtain the following rations between the cross-sections:

σ3 : σ7 : σ2 : σ1 = 1 : 2 : 4 : 9. (10)


