PAGE 1 OF 2

FY3403 Particle physics

Problemset 4

SUGGESTED SOLUTION

Problem 1

a) We may rotate the square through angles $\theta = 0, \pi/2, \pi, 3\pi/2$ (elements E, C, C^2, C^3). We may further mirror in the x- and y-axes (elements σ_x and σ_y) and in the two diagonals (elements σ_1 and σ_2). Altogether the group has 8 elements.

b)

	$oldsymbol{E}$	C	C^2	C^3	σ_x	σ_y	σ_1	σ_2
\boldsymbol{E}	E	C	C^2	C^3	σ_{x}	σ_y	σ_1	σ_2
C	C	C^2	C^3	E	σ_1	σ_2	σ_{x}	σ_y
C^2	C^2	C^3	E	C	σ_y	σ_{x}	σ_2	σ_1
C^3	C^3	E	C	C^2	σ_2	σ_1	σ_y	σ_{x}
σ_x	σ_{x}	σ_2	σ_y	σ_1	E	C^2	C^3	C
σ_y	σ_y	σ_1	σ_{x}	σ_2	C^2	E	C	C^3
σ_1	σ_1	σ_{x}	σ_2	σ_y	C	C^3	E	C^2
σ_2	σ_2	σ_y	σ_1	σ_{x}	C^3	C	C^2	E

- c) The group is non-abelian. For instance, we find that $\sigma_x \cdot \sigma_1 = C^3$ while $\sigma_1 \cdot \sigma_x = C$.
- d) There are quite a few subgroups.
- (i) All proper rotations $\{E, C, C^2, C^3\}$.
- (ii) Rotations by $0, \pi, \{E, C^2\}$.
- (iii) Reflections (mirroring) about the *x*-axis, $\{E, \sigma_x\}$.
- (iv) Reflections about the *y*-axis, $\{E, \sigma_y\}$.
- (v) Reflections about the d_1 -axis, $\{E, \sigma_1\}$.
- (vi) Reflections about the d_2 -axis, $\{E, \sigma_2\}$.
- (vii) *xy*-reflections and rotations by π , $\{E, C^2, \sigma_x, \sigma_y\}$.
- (viii) d_1d_2 -reflections and rotations by π , $\{E, C^2, \sigma_1, \sigma_2\}$.
- (ix) Doing nothing, $\{E\}$.

Problem 2

- a) If we reverse the direction of the axis we rotate about, and at the same time rotate in the opposite direction, it is still the same physical rotation.
- b) We first calculate

$$(\hat{n} \cdot \boldsymbol{\sigma})^2 = (n_x \boldsymbol{\sigma}_X + n_y \boldsymbol{\sigma}_y + n_z \boldsymbol{\sigma}_z)^2$$

= $n_x^2 + n_y^2 + n_z^2$ (1)

FY3403 PROBLEMSET 4 PAGE 2 OF 2

because all cross terms between different σ_i -matrices give terms with anticommutators like $\sigma_x \sigma_y + \sigma_y \sigma_x$, and these are zero. Only σ_i^2 terms survive, and these equal 1.

It follows that $(\hat{n} \cdot \boldsymbol{\sigma})^{2n} = 1$ while $(\hat{n} \cdot \boldsymbol{\sigma})^{2n+1} = (\hat{n} \cdot \boldsymbol{\sigma})$. We may then expand the exponential in a Taylor series:

$$e^{i\theta\hat{n}\cdot\sigma/2} = \sum_{m=0}^{\infty} \frac{(i\theta/2)^m}{m!} (\hat{n}\cdot\sigma)^m$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{(\theta/2)^{2n}}{2n!} + i\hat{n}\cdot\sigma \sum_{n=0}^{\infty} (-1)^n \frac{(\theta/2)^{2n+1}}{(2n+1)!}$$

$$= \cos(\theta/2) + i\sin(\theta/2)\hat{n}\cdot\sigma. \tag{2}$$

where we in the last equality have used the series expansion of $\cos x$ and $\sin x$ with $x = \theta/2$.

c) With $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, we obtain:

$$\chi_{\theta} = R(-\theta, \hat{e}_{y})\chi_{+} = \begin{pmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{pmatrix}$$
(3)

d) Rotating the z unit vector an angle θ about the y-axis gives us $\hat{n} = \sin \theta \hat{e}_x + \cos \theta \hat{e}_z$ so that $\sigma_{\hat{n}} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$. We then find that:

$$\sigma_{\hat{n}}\chi_{\theta} = \begin{pmatrix} \cos\theta\cos(\theta/2) + \sin\theta\sin(\theta/2) \\ \sin\theta\cos(\theta/2) - \cos\theta\sin(\theta/2) \end{pmatrix} \tag{4}$$

Simplifying this with trigonometric identities provides the desired result.