PAGE 1 OF 2 # FY3403 Particle physics ## **Problemset 4** #### SUGGESTED SOLUTION #### **Problem 1** a) We may rotate the square through angles $\theta = 0, \pi/2, \pi, 3\pi/2$ (elements E, C, C^2, C^3). We may further mirror in the x- and y-axes (elements σ_x and σ_y) and in the two diagonals (elements σ_1 and σ_2). Altogether the group has 8 elements. b) | | $oldsymbol{E}$ | C | C^2 | C^3 | σ_x | σ_y | σ_1 | σ_2 | |------------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | \boldsymbol{E} | E | C | C^2 | C^3 | σ_{x} | σ_y | σ_1 | σ_2 | | C | C | C^2 | C^3 | E | σ_1 | σ_2 | σ_{x} | σ_y | | C^2 | C^2 | C^3 | E | C | σ_y | σ_{x} | σ_2 | σ_1 | | C^3 | C^3 | E | C | C^2 | σ_2 | σ_1 | σ_y | σ_{x} | | σ_x | σ_{x} | σ_2 | σ_y | σ_1 | E | C^2 | C^3 | C | | σ_y | σ_y | σ_1 | σ_{x} | σ_2 | C^2 | E | C | C^3 | | σ_1 | σ_1 | σ_{x} | σ_2 | σ_y | C | C^3 | E | C^2 | | σ_2 | σ_2 | σ_y | σ_1 | σ_{x} | C^3 | C | C^2 | E | - c) The group is non-abelian. For instance, we find that $\sigma_x \cdot \sigma_1 = C^3$ while $\sigma_1 \cdot \sigma_x = C$. - d) There are quite a few subgroups. - (i) All proper rotations $\{E, C, C^2, C^3\}$. - (ii) Rotations by $0, \pi, \{E, C^2\}$. - (iii) Reflections (mirroring) about the *x*-axis, $\{E, \sigma_x\}$. - (iv) Reflections about the *y*-axis, $\{E, \sigma_y\}$. - (v) Reflections about the d_1 -axis, $\{E, \sigma_1\}$. - (vi) Reflections about the d_2 -axis, $\{E, \sigma_2\}$. - (vii) *xy*-reflections and rotations by π , $\{E, C^2, \sigma_x, \sigma_y\}$. - (viii) d_1d_2 -reflections and rotations by π , $\{E, C^2, \sigma_1, \sigma_2\}$. - (ix) Doing nothing, $\{E\}$. ### **Problem 2** - a) If we reverse the direction of the axis we rotate about, and at the same time rotate in the opposite direction, it is still the same physical rotation. - b) We first calculate $$(\hat{n} \cdot \boldsymbol{\sigma})^2 = (n_x \boldsymbol{\sigma}_X + n_y \boldsymbol{\sigma}_y + n_z \boldsymbol{\sigma}_z)^2$$ = $n_x^2 + n_y^2 + n_z^2$ (1) FY3403 PROBLEMSET 4 PAGE 2 OF 2 because all cross terms between different σ_i -matrices give terms with anticommutators like $\sigma_x \sigma_y + \sigma_y \sigma_x$, and these are zero. Only σ_i^2 terms survive, and these equal 1. It follows that $(\hat{n} \cdot \boldsymbol{\sigma})^{2n} = 1$ while $(\hat{n} \cdot \boldsymbol{\sigma})^{2n+1} = (\hat{n} \cdot \boldsymbol{\sigma})$. We may then expand the exponential in a Taylor series: $$e^{i\theta\hat{n}\cdot\sigma/2} = \sum_{m=0}^{\infty} \frac{(i\theta/2)^m}{m!} (\hat{n}\cdot\sigma)^m$$ $$= \sum_{n=0}^{\infty} (-1)^n \frac{(\theta/2)^{2n}}{2n!} + i\hat{n}\cdot\sigma \sum_{n=0}^{\infty} (-1)^n \frac{(\theta/2)^{2n+1}}{(2n+1)!}$$ $$= \cos(\theta/2) + i\sin(\theta/2)\hat{n}\cdot\sigma. \tag{2}$$ where we in the last equality have used the series expansion of $\cos x$ and $\sin x$ with $x = \theta/2$. c) With $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, we obtain: $$\chi_{\theta} = R(-\theta, \hat{e}_{y})\chi_{+} = \begin{pmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{pmatrix}$$ (3) d) Rotating the z unit vector an angle θ about the y-axis gives us $\hat{n} = \sin \theta \hat{e}_x + \cos \theta \hat{e}_z$ so that $\sigma_{\hat{n}} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$. We then find that: $$\sigma_{\hat{n}}\chi_{\theta} = \begin{pmatrix} \cos\theta\cos(\theta/2) + \sin\theta\sin(\theta/2) \\ \sin\theta\cos(\theta/2) - \cos\theta\sin(\theta/2) \end{pmatrix} \tag{4}$$ Simplifying this with trigonometric identities provides the desired result.