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FY3403 Particle physics NTNU
Problemset 11

Institutt for fysikk
SUGGESTED SOLUTION

Problem 1

This exercise is meant to illustrate the important mechanism of spontaneous symmetry breaking,
where a symmetric potential can lead to ground states where the symmetry is in some sense ’"lost’.

Consider a classical particle parameterized by the two-dimensional coordinate r = (x(¢),y(¢)), and let
it travel according to the following Hamiltonian

H— %m(xz—&-yz)—V(x,y) (1)
where V (x,y) = a(x* +y?) + b(x> +y*)* = a(x* +y?) + b(x* +2x%y* +y*).
a) What symmetries does the potential possess?
SOLUTION: Rotationally symmetric around the z-axis.

b) Consider the case a,b > 0. What is the minimum of the potential? At which point does this mini-
mum occur?

SOLUTION: if a and b are positive, then the potential is nonnegative. This implies x =y = 0 is the
only minimum of the potential with V(0,0) = 0.

¢) Suppose a particle is situated at the minimum (X, Yimin ). A way to check if this minimum is stable
is to change to polar coordinates centered at (xuin,ymin) and calculate how the potential looks like
locally around r = 0. Taylor expand V (x,y) around (Xin, Vmin) to second order and express the result
in polar coordinates. Argue whether the minima are stable or not.

SOLUTION: As we are using polar coordinates centered at the origin, this is just regular polar coor-
dinates. Let x = (x,y) and o = (Xmin, Ymin)

1
V(x,y) = V(@o) + VV(@o)(@ —z0) + 5 (@ — a0)" H (w0) (z — o). 2
We thus need the gradient and the hessian of the potential, which are

2ax + 4bx(x> +y?) 2a+ 8bx> +4b(x* +y?) 8bxy
VvV = 2, 2y H= 2 2.2 3)
2ay + 4by(x* +y?) 8bxy 2a+ 8by” +4b(x* +y~)

which at (0,0) gives
VV(0,0) = (8) H(0,0) = <2(;1 200> . 4)
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We thus end up with
V(x,y) ~a(x®+y*) = ar’ (3)

which, of course, match the potential above. The potential is stable, since any perturbation r > 0
would lead to an increase in the energy.

d) Consider now the case a < 0 < b. What is the minimal value now? At which point(s) does this
minimal value occur?

SOLUTION:
V(r) —ar2+br4—b(r4+gr2) =b( 24—1)2—6L2 (6)
N N N 2b7  4b
has the minimal value 5
a
- 7
4b )
when u
2 _—
r=ay )

that is for all values x and y on the circle of radius — .

e) Pick one of the points where the minimal value occur and do the Taylor expansion as above. Argue
whether your minima is stable or not. (Hint: remember to use polar coordinates centered at the point
you chose)

SOLUTION: The calculation of the derivative is the same as above. The only difference is the base
point of the polar coordinates, which I choose to be (,/—3;,0) on the positive x-axis. From the
derivatives above, one obtains

Ly <2a+4g(—;b)> _ <8> ©)

_ (2a+8b; +4b~5y 0 _(—4a O
H("”O)_< 0 2a+4b5¢) 0 0 (10)

This gives the approximate potential

2

a —a
~—— —2a(x— /=) 11
Combining this last equation with the polar coordinates
x=4/ —za—b + rcos(0)
y = rsin(0)
Gives
@ 2 2
V(r,8) = ~1 —2ar”cos”(0) (12)

As a < 0and cos2(6) > 0, the 2 term is always non-negative. However, for 8 = %, it vanishes! If you
draw a picture, you will see something like figure 1. From the figure, it is clear that ® = J corresponds
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to moving along the trough and show therefore that the ground states are unstable. From the particle
point of view, it would seem that the original symmetry is lost due to the 6-dependence of equation
(12).

Figure 1: The Mexican hat potential.

f) If you have done all the above exercises correctly, you will have observed that the ground state in ¢
is stable and retains the original symmetry of the potential, whereas the ground state(s) in d does not.
At what point in your calculation in d do you actually lose the symmetry of the initial problem?

SOLUTION: It is important to realise that it was our choice of ground state (,/—7;,0) that broke
the symmetry. What is the physical justification for choosing a state like this? The answer is that
nature would do the same! The origin is no longer a stable extrema of the potential, and the instability
would make any perturbation from (0,0) push the system towards one of the true minimizers (down
in the trough). The universe still posses the original rotational symmetry, but it is only reflected in the
collection of ground states as a whole and not in any particular one (all points on a circle corresponded
to a ground state).

Phenomena like these, where the original rotational symmetry is lost in each of the ground states, but
is retained if you look at the collection of ground states, are called Spontaneous Symmetry Breaking.
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Problem 2

A full treatment of the Higgs mechanism in the Standard model requires writing down a formidable
Lagrangian taking into account interactions between many different fields. This exercise is instead
meant to show the basic mechanism by which mass terms can be modified in a Lagrangian when
symmetries are broken.

Consider the Lagrangian

L=—mi®—V(x),V(x) = —ax* + bx* (13)

where a,b > 0.

a) Complete the square in the potential term and discard any constants.

SOLUTION: )
a a a a
Vx)=b(x*——x*) =b(x* — =) — — ~b(x¥* — —)* = by? 14
(1) = bl = 222) = b — - = = b(P — 2 = by (14)
b) Introduce the variable y = x> — 55 and write L as a function of y.
SOLUTION: ] .
. . .Y y
Yy=20 k=1 = —F—— (15)
2x 2\/y+x;
giving
L) =tm Ly (16)
= —m _
Y 2 27“+4y Y

¢) Assume y is small and Taylor expand to leading order. What is the mass term in this new La-
grangian?

SOLUTION: The only length scale we have to compare y to is 57 thus y being small means y/ 57 < 1.
This gives

12ma N

L(y) & 5mi* (- —4y) =by* = 3 == = V(0.9), V (5y) = by + 2my’y (17)

We observe that the mass term has been modified and that there are new interactions (see the last term
in the modified potential).



