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Suggested solution for 2019 Exam in Electricity and Magnetism

NOTE: The solutions below are meant as guidelines for how the problems may be solved and
do not necessarily contain all the detailed steps of the calculations.

1: Use U = e2/4πε0r to find 1.44 meV.

2: Can be solved by constructing the effective capacitance of the junction. The parallell coupling between C and 2C gives
an effective capacitance of 3C. This effective capacitance in series with the C-capacitor gives a total effective capacitance
Ceff = 3C/4. The charge on Ceff is Q =V0Ceff. Since the charge on capacitors coupled in series must be the same, this charge Q
also sits on the effective capacitance 3C. In turn, Q is split into 2Q/3 on the 2C capacitor and Q/3 on the C capacitor. Therefore,
the charge indicated in the picture is CV0/2.

3: From a simple closed circuit with an AC voltage source and a capacitor, the student should be able to use that v = q/C and
the reactance V/I = X to show that X = 1/(ωC). Inserting numbers gives the correct answer 0.01 Ω.

4: All surplus charge on a conductor must under equilibrium conditions reside on its surface. Therefore, the charge of the
sphere will be zero.

5: Using a phasor diagram, the student should be able to derive that the impedance Z of the circuit is maximal at the resonance
frequency ω = 1/(LC). Therefore, the current I(t) is minimal at this frequency. IL decreases with ω while Ic increases with ω.

6: All statements are correct.

7: Use Gauss law for a cylinder with radius r and height l to find E(r)2πrl = λl/ε0, so that E(r) = 2kλ/r.

8: As the magnet falls, a current is induced in the loop which tries to counteract the change in magnetic flux (which is in-
creasing). This current thus has to circulate counterclockwise, which is in the negative current direction according to the arrows
on the figure. When the magnet has passed through the loop, the flux decreases and a current is induced which tries to keep the
flux stable: this has to circulate in the clockwise direction, which is in the positive current direction. The correct figure is thus (2).

9: It is the distance from the element dl to the point P, so the correct answer is r3.

10: Only the electric field, since all other quantities mentioned in the statements depend on d: C = ε0A/d, U = 1
2CV 2, V =Ed.

11: Using the right-hand rule with the Lorentz-force F = qv×B, one finds that positive charge accumulates at the top of the
rod. The correct answer is thus figure C.

12: It propagates in the positive y-direction and the speed of light in the medium is found from the ratio E/B which gives
about 57% of the vacuum speed of light.

13: Using Ampere’s law, one easily sees that the field produced by a very long (infinite) wire scales with the current: B ∝ I.
Since the flux Φ ∝ B and ε =−dΦ/dt, it is clear that the current I = ε/R in the conductor is proportional to k. Since the current
tries to counteract the flux which induced it, it has to circulate clockwise.

14: As provided in the formula sheet, the voltage of a capacitor coupled in series with a current-source lags the current by
π/2. Opposite for an inductor. Since VR ∝ I, alternative 2 is correct.
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15: The speed of an EM wave in a medium is generally 1/
√

εµ and thus the statement about the speed of an EM wave in the
alternatives is incorrect.

16: The magnetic field of a wire circulates the wire according to the right-hand rule: thumbs in the direction of I will give
fingers that bend in the direction of B. Moreover, the contribution to the total field at a given point is strongest from the wire
which is closest to that point. Using these two facts in the left region, the region between the wires, and the right region, one
sees that alternative 3 is correct.

17: Since the ideal inductor has no internal resistance and gives a voltage drop proportional to dI/dt, it has no effect for a dc
current.

18: Since the velocity of the electric current is given by vd , there is no drift velocity when the current is zero. Thus, the
statement that the drift velocity is non-zero even when no current flows through the circuit is incorrect.

19: Diamagnetism, since it occurs even for a constant field (unlike Faraday’s law).

20: Since X =V/I, the student should be able to derive that X =ωL from the provided formula v= Ldi/dt in the formula sheet.

Problem 21: (a) The surface of the sphere is A = 4πr2. The intensity for visible light is thus 0.05×75W/(4πr2) = 330 W/m2.
(b) The electric field amplitude is related to the intensity of the entire EM wave via Emax =

√
2I/ε0c = 500 V/m. The magnetic

field amplitude is then obtained as Bmax = Emax/c = 1.7µT. We’ve used the speed of light in vacuum. NB! There might have
been confusion about which intensity to use in (b): the intensity for the visible light or the full intensity for the EM wave. Thus,
full score has been given if the student has used either of these two alternatives.

Problem 22: (a) Kirchhoff’s law for voltage gives that

ε− iR−L
di
dt

= 0. (1)

The current is thus

i =
ε

R
[1− e−(R/L)t ] (2)

as obtained by solving the differential equation with the initial condition that i= 0. The student is expected that be able to deduce
that this is the required initial condition, since a finite current at t = 0 would give an infinite derivative di/dt. At t = 0, i = 0,
and therefore

di/dt|t=0 = ε/L = 2.4 A/s. (3)

(b) Generally, we have

di/dt = (ε− iR)/L. (4)

Plugging in values and i = 0.5 A, we get di/dt = 0.8 A/s. (c) Using Eq. (2), we get 0.41 A. (d) At steady state, we have t→ ∞

and di/dt→ 0, so that ε− iR = 0. Therefore, i(t→ ∞) = 0.75 A.

Problem 23: The key here is to first realize that the electric field at a distance R from the center of the solenoid can be obtained
using Faraday’s law ε =−dΦ/dt since ε = E×2πR. The corresponding flux is computed by using that the magnetic field only
exists inside the solenoid, so that Φ = Bπr2 where r = 1.1 cm.

It remains to specify what the magnetic field inside the solenoid. The student is expected to be able to use Ampere’s law and
deduce that

B = µ0ni (5)
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where n = 400 is the number of windings per meter and i is the current through each winding. We thus obtain

|ε|= |dΦ/dt|= |d/dt(µ0niπr2)|= µ0nπr2|di/dt|= E2πR. (6)

We thus obtain |di/dt|= 9.21 A/s.

Problem 24: The torque is given by τ = µ×B. The maximum torque is obtained when the plane of the ring is oriented parallell
to the magnetic field, so that µ⊥ B. The value of the torque is then

µB = [Iπ(d/2)2]B (7)

where B = 0.375 T. We need to know I and this is obtained by using Ampere’s law to deduce the the following relation between
the field b created in the middle of the ring by the current itself and the current I:

b = µ0I/2R. (8)

Since b = 75.4µT, one finds I = 3 A. This finally yields the maximal torque τ = µB = 2.2×10−3 Nm.

Problem 25: The charge q on each capacitor has to be the same since they are coupled in series. Moreover, the effective
capacitance of the circuit is given by

1/Ceff = 1/C1 +1/C2 +1/C3 (9)

where Ci are the capacitances of the three capacitors. In this way, one finds Ceff = 4.6 pF. From now on, let C≡Ceff. The energy
stored on the capacitors can now be computed from the single effective capacitance which holds a charge q, according to

U = q2/2C. (10)

Using Kirchhoff’s law for voltage, one finds

q/C+ iR = 0→ q/C+(dq/dt)R = 0 (11)

where q is the instantaneous charge on the effective capacitor. This equation is solved to give

q = Q0e−t/(RC) (12)

where Q0 = 3.5 nC is the charge the capacitor initially holds. The current in the circuit is thus

|i|= |dq/dt|= (Q0/RC)e−t/(RC). (13)

Now, when the capacitor has lost 80% of its initial stored energy, the stored energy is equal to 0.2Q2
0/2C. At the time t when

this happens, we thus have:

Q2
0e−2t/(RC)/2C = 0.2Q2

0/2C, (14)

which we can solve for t to give

t = 92.9 ps. (15)

The current at that time may then be computed according to Eq. (13) and gives

I = 13.6 A. (16)

Problem 26: (a) The key here is to use Gauss’ law with a spherical surface to make use of the radial symmetry of the problem.
For such a sphere with radius r, we get

Qencl =
∫ r

a
ρ(r′)dV = 4πα

∫ r

a
r′dr′ = 2πα(r2−a2). (17)

jacobrun
Sticky Note
Should say Biot-Savart's law here, not Ampere's law
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According to Gauss’ law, this should equal E4πr2 so that

E =
α

2ε0
(1−α

2/r2). (18)

(b) The electric field provided by the point charge is Eq = q/4πε0r2. We see that the point charge cancels out the 1/r2 dependence
of the E-field from the spherical shell if

q = 2παa2. (19)

Only the constant term in Eq. (18) then remains, so that

E =
α

2ε0
. (20)


