
CLASSICAL MECHANICS TFY4345 - Solution Exercise Set 6

(1a) The force is given by

f (r) =−k/r2 +β/r3 (1)

with a belonging potential V (r) = −k/r + β/(2r2). We de-
rived in the lectures that

θ =
∫ dr/(r2)√

2mE/l2−2mV/l2−1/r2
+ constant (2)

Now insert the V (r) and also introduce u = 1/r to obtain:

θ =
∫ du√

2mE/l2−2mku/l2− γ2u2
(3)

We’ve here assumed initial conditions so that the integration
constant vanishes and defined γ2 = 1+βm/l2. This integral
can be looked up in a collection of mathematical formulae
(e.g. Rottman) and gives us the solution:

θ =−γ
−1 arccos(

p/r−1
ε

) (4)

where we have defined

p = γ
2l2/(mk),ε =

√
1+2Eγ2l2/(mk2). (5)

We then get the equation for the orbit:

r =
p

1+ εcos(γθ)
(6)

Assume E < 0 in which case this equation describes a slowly
precessing ellipse. The major halfaxis is a= p/(1−ε2) which
by direct insertion gives a = k/(2|E|) just like for γ = 1, i.e. it
is unaffected by β.

(1b) Using spherical coordinates, the Lagrange-function
reads:

L = T −V = l2m(θ̇2 + sin2
θφ̇

2)/2+mgl cosθ (7)

The Lagrange-equation for θ gives us:

θ̈− sin(2θ)φ̇2/2+(g/l)sinθ = 0 (8)

whereas the equation for φ provides us with

pφ = ml2 sin2
θφ̇ = constant (9)

since φ is a cyclic coordinate in the Lagrangian. The total
energy E is conserved. This may be expressed as

E = ml2
θ̇

2 +
p2

φ

2ml2 sin2
θ
−mgl cosθ (10)

upon eliminating φ̇ in favor of pφ. We thus obtain an effective
potential in the following form:

E =
1
2

ml2
θ̇

2 +Veff(θ), (11)

where Veff(θ) =
p2

φ

2ml2 sin2
θ
−mgl cosθ. This means that θ̇2 =

2(E−Veff)/(ml2), which in turn can be separated to yield:

t =
∫

dt =
√

ml2/2
∫ dθ√

E−Veff(θ)
. (12)

We also have from the equation for the canonical momentum
associated with φ (namely pφ) that:

φ =
pφ√
2ml2

∫ dθ

sin2
θ
√

E−Veff(θ)
(13)

If pφ = 0, then φ is a constant which corresponds to a planar
pendulum.


