CLASSICAL MECHANICS TFY4345 - Solution Exercise Set 6

(1a) The force is given by
flr)=—k/r*+B/r (1)

with a belonging potential V(r) = —k/r+B/(2r). We de-
rived in the lectures that
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Now insert the V (r) and also introduce u = 1/r to obtain:
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We’ve here assumed initial conditions so that the integration
constant vanishes and defined Y = 1+ Bm/I>. This integral
can be looked up in a collection of mathematical formulae
(e.g. Rottman) and gives us the solution:
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where we have defined

p="VP/(mk).e = \/1 +2E22/(mi2).  (5)

We then get the equation for the orbit:
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Assume E < 0 in which case this equation describes a slowly
precessing ellipse. The major halfaxis is a = p/(1 —€?) which
by direct insertion gives a = k/(2|E|) just like for y= 1, i.e. it
is unaffected by B.

(1b) Using spherical coordinates, the Lagrange-function
reads:

L=T-V =Pm(6*+sin*0¢%)/2+mglcos®  (7)

The Lagrange-equation for 0 gives us:

6 —sin(20)¢*/2+ (g/1)sin® = 0 (8)
whereas the equation for ¢ provides us with
po = ml?sin®* 6 = constant 9)

since ¢ is a cyclic coordinate in the Lagrangian. The total
energy FE is conserved. This may be expressed as

P2
E=mP®+_—2%
2mi?sin* @
upon eliminating ¢ in favor of Do- We thus obtain an effective
potential in the following form:

—mglcos0 (10)

1 .
E= Emzze2 + Vet (0), (11)

2

where Ve;(0) = m — mglcos®. This means that % =

2(E — Vegr) / (ml?), which in turn can be separated to yield:

z:/dt:w/mﬂ/z/\/]#eff(e). (12)

We also have from the equation for the canonical momentum
associated with ¢ (namely py) that:

o= 2 49 (13)
V2mi? ) sin?0\/E — Vg (0)

If py = 0, then ¢ is a constant which corresponds to a planar
pendulum.



