
CLASSICAL MECHANICS TFY4345 - Solution Exercise Set 12

(1a) We have [u,v]Q,P = ∂Qu∂Pv−∂Pu∂Qv. Using that q =√
2P/(mω)sinQ and p = mωqcotQ, we obtain:

∂Qu = ∂qu∂Qq+∂pu∂Q p = ∂q
√

2P/(mω)cosQ−∂pu
mωq

sin2 Q
(1)

and also

∂Pv = ∂qv∂Pq+∂pv∂P p = ∂qv
sinQ√
2mωP

. (2)

In exactly the same way, one can obtain expressions for ∂Qv
and ∂Pu. With these 4 quantities in hand, we can now evaluate:

[u,v]Q,P =
(

∂qu∂pv−∂pu∂qv
) mωqsinQ

sin2 Q
√

2mωP
(3)

where the term inside the parantheses is seen to be [u,v]q,p.
The factor that appears afterwards is equal to 1, as seen when
inserting for q. Thus, we have shown that

[u,v]q,p = [u,v]Q,P (4)

for the harmonic oscillator.

(1b) In general, Fµν =Aν,µ−Aµ,ν with Aµ =(A, iφ/c). The full
matrix form of both Fµν and Lµν is written in the compendium.
Since F transforms as

F ′µν = LµαLνβFαβ, (5)

it follows that

E ′1 = γ(E1− vB2),

E ′2 = γ(E2 + vB1),

E ′3 = E3. (6)

With γ ' 1, we then have E′ = E+ v×B. Writing down the
same type of equations for the components Bi of the magnetic
field and then taking the limit γ ' 1, provides B′ = B− (v×
E)/c2.

(1c) In the instantaneous rest-system we have j = σE. Since
the current density is finite, we must have E′→ 0 when σ→
∞. This means that 0 = E+ u×B, where the terms on the
right-hand side are the fields in the lab-system. It follows that
E=−u×B inside the fluid in the lab-system. To lowest order,
we may set B = B0+O(u). See figure in Norwegian solution.


